Publications
Publication | ||
---|---|---|
Chilcote, Michael, Alessandro R. Mazza, Qiangsheng Lu, Isaiah Gray, Qi Tian, Qinwen Deng, Duncan Moseley, et al. 2024. “Stoichiometry‐Induced Ferromagnetism in Altermagnetic Candidate MnTe.” Advanced Functional Materials, June. https://doi.org/10.1002/adfm.202405829. | 2024 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Sarkis, Colin L., John W. Villanova, Casey Eichstaedt, Adolfo G. Eguiluz, Jaime A. Fernandez-Baca, Masaaki Matsuda, Jiaqiang Yan, et al. 2024. “Experimental Evidence for Nonspherical Magnetic Form Factor in Ru3+.” Physical Review B 109 (10). https://doi.org/10.1103/physrevb.109.104432. | 2024 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Welakuh, Davis M., and Prineha Narang. 2024. “Nonlinear Optical Processes in Centrosymmetric Systems by Cavity-Induced Symmetry Breaking.” ACS Photonics 11 (2): 369–77. https://doi.org/10.1021/acsphotonics.2c01933. | 2024 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Mielke, C., D. Das, J. Spring, H. Nakamura, S. Shin, H. Liu, V. Sazgari, et al. 2024. “Microscopic Study of the Impurity Effect in the Kagome Superconductor La(Ru1−xFex)3Si2.” Physical Review B 109 (13). https://doi.org/10.1103/physrevb.109.134501. | 2024 | 1.1.1.02 Controlling and Interacting with Anyons |
Huang, Yixuan, D. N. Sheng, and Jian-Xin Zhu. 2024. “Magnetic Field Induced Partially Polarized Chiral Spin Liquid in a Transition Metal Dichalcogenide Moiré System.” Physical Review B 109 (16). https://doi.org/10.1103/physrevb.109.165109. | 2024 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Chen, An‐Hsi, Qiangsheng Lu, Eitan Hershkovitz, Miguel L. Crespillo, Alessandro R. Mazza, Tyler Smith, T. Zac Ward, et al. 2024. “Interfacially Enhanced Superconductivity in Fe(Te,Se)/Bi4Te3 Heterostructures.” Advanced Materials, June. https://doi.org/10.1002/adma.202401809. | 2024 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Villanova, John W., Saban Hus, Seoung-Hun Kang, Hoyeon Jeon, An-Ping Li, David Mandrus, Zheng Gai, and Mina Yoon. 2024. “Ghost States and Surface Structures of the Charge Density Wave Kagome Metal ScV6Sn6.” Applied Surface Science 665 (August): 160190. https://doi.org/10.1016/j.apsusc.2024.160190. | 2024 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Halász, Gábor B. 2024. “Gate-Controlled Anyon Generation and Detection in Kitaev Spin Liquids.” Physical Review Letters 132 (20). https://doi.org/10.1103/physrevlett.132.206501. | 2024 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Zhang, Xiaoqian, Yue Li, Qiangsheng Lu, Xueqiang Xiang, Xiaozhen Sun, Chunli Tang, Muntasir Mahdi, et al. 2024. “Epitaxial Growth of Large‐Scale 2D CrTe2 Films on Amorphous Silicon Wafers With Low Thermal Budget.” Advanced Materials 36 (24). https://doi.org/10.1002/adma.202311591. | 2024 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Thomsen, Joachim Dahl, Myung-Geun Han, Aubrey N. Penn, Alexandre C. Foucher, Michael Geiwitz, Kenneth Stephen Burch, Lukas Dekanovsky, et al. 2024. “Effect of Surface Oxidation and Crystal Thickness on the Magnetic Properties and Magnetic Domain Structures of Cr2Ge2Te6.” ACS Nano 18 (21): 13458–67. https://doi.org/10.1021/acsnano.3c09858. | 2024 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Hua, Chengyun, Lucas Lindsay, Yuya Shinohara, and David Alan Tennant. 2024. “Dynamics of Nonequilibrium Magnons in Gapped Heisenberg Antiferromagnets.” Physical Review B 109 (5). https://doi.org/10.1103/physrevb.109.054306. | 2024 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Shan, Jun-Yi, Jonathan B. Curtis, Mingyao Guo, Chang Jae Roh, C. R. Rotundu, Young S. Lee, Prineha Narang, Tae Won Noh, Eugene Demler, and D. Hsieh. 2024. “Dynamic Magnetic Phase Transition Induced by Parametric Magnon Pumping.” Physical Review B 109 (5). https://doi.org/10.1103/physrevb.109.054302. | 2024 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Pham, Tuan Anh, Seoung-Hun Kang, Yasemin Ozbek, Mina Yoon, and Pengpeng Zhang. 2024. “Distance-Dependent Evolution of Electronic States in Kagome-Honeycomb Lateral Heterostructures in FeSn.” ACS Nano 18 (12): 8768–76. https://doi.org/10.1021/acsnano.3c11381. | 2024 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Plokhikh, I., C. Mielke, H. Nakamura, V. Petricek, Y. Qin, V. Sazgari, J. Küspert, et al. 2024. “Discovery of Charge Order above Room-Temperature in the Prototypical Kagome Superconductor La(Ru1−xFex)3Si2.” Communications Physics 7 (1). https://doi.org/10.1038/s42005-024-01673-y. | 2024 | 1.1.1.02 Controlling and Interacting with Anyons |
Litskevich, Maksim, Md Shafayat Hossain, Song-Bo Zhang, Zi-Jia Cheng, Satya N. Guin, Nitesh Kumar, Chandra Shekhar, et al. 2024. “Boundary Modes of a Charge Density Wave State in a Topological Material.” Nature Physics, June. https://doi.org/10.1038/s41567-024-02469-1. | 2024 | 1.1.1.02 Controlling and Interacting with Anyons |
Park, Eugene, John P. Philbin, Hang Chi, Joshua J. Sanchez, Connor Occhialini, Georgios Varnavides, Jonathan B. Curtis, et al. 2024. “Anisotropic 2D van Der Waals Magnets Hosting 1D Spin Chains.” Advanced Materials, June. https://doi.org/10.1002/adma.202401534. | 2024 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Hossain, Md Shafayat, Frank Schindler, Rajibul Islam, Zahir Muhammad, Yu-Xiao Jiang, Zi-Jia Cheng, Qi Zhang, et al. 2024. “A Hybrid Topological Quantum State in an Elemental Solid.” Nature 628 (8008): 527–33. https://doi.org/10.1038/s41586-024-07203-8. | 2024 | 1.1.1.02 Controlling and Interacting with Anyons |
Weber, Bent, Michael S Fuhrer, Xian-Lei Sheng, Shengyuan A Yang, Ronny Thomale, Saquib Shamim, Laurens W Molenkamp, et al. 2024. “2024 Roadmap on 2D Topological Insulators.” Journal of Physics: Materials 7 (2): 022501. https://doi.org/10.1088/2515-7639/ad2083. | 2024 | 1.1.1.02 Controlling and Interacting with Anyons |
Manoj, Nandagopal, and Valerio Peri. 2024. “Three-Dimensional Quantum Hall States as a Chiral Electromagnetic Filter.” arXiv. https://doi.org/10.48550/ARXIV.2405.09617. | 2024 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Scheie, A. O., Y. Kamiya, Hao Zhang, Sangyun Lee, A. J. Woods, M. O. Ajeesh, M. G. Gonzalez, et al. 2024. “Nonlinear Magnons and Exchange Hamiltonians of the Delafossite Proximate Quantum Spin Liquid Candidates KYbSe2 and NaYbSe2.” Physical Review B 109 (1). https://doi.org/10.1103/physrevb.109.014425. | 2024 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Berthusen, Noah, Dhruv Devulapalli, Eddie Schoute, Andrew M. Childs, Michael J. Gullans, Alexey V. Gorshkov, and Daniel Gottesman. 2024. “Toward a 2D Local Implementation of Quantum LDPC Codes.” arXiv. https://doi.org/10.48550/ARXIV.2404.17676. | 2024 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Sharma, Sanket, Thomas Papenbrock, and Lucas Platter. 2023. “Scattering Phase Shifts from a Quantum Computer.” arXiv. https://doi.org/10.48550/ARXIV.2311.09298. | 2023 | 1.2.2.05 Strong interactions and dynamics: from quarks to nuclei |
Shimasaki, Toshihiko, Max Prichard, H. Esat Kondakci, Jared E. Pagett, Yifei Bai, Peter Dotti, Alec Cao, et al. 2024. “Anomalous Localization in a Kicked Quasicrystal.” Nature Physics 20 (3): 409–14. https://doi.org/10.1038/s41567-023-02329-4. | 2024 | 1.2.2.03 Kitaev Chain Quantum Simulator |
Wang, Samson, Piotr Czarnik, Andrew Arrasmith, M. Cerezo, Lukasz Cincio, and Patrick J. Coles. 2024. “Can Error Mitigation Improve Trainability of Noisy Variational Quantum Algorithms?” Quantum 8 (March): 1287. https://doi.org/10.22331/q-2024-03-14-1287. | 2024 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Kliuchnikov, Vadym, and Eddie Schoute. 2024. “Minimal Entanglement for Injecting Diagonal Gates.” arXiv. https://doi.org/10.48550/ARXIV.2403.18900. | 2024 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Patel, Dhrumil, Shi Jie Samuel Tan, Yigit Subasi, and Andrew T. Sornborger. 2024. “Optimal Coherent Quantum Phase Estimation via Tapering.” arXiv. https://doi.org/10.48550/ARXIV.2403.18927. | 2024 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Selvarajan, Raja, Manas Sajjan, Travis S. Humble, and Sabre Kais. 2023. “Dimensionality Reduction with Variational Encoders Based on Subsystem Purification.” Mathematics 11 (22): 4678. https://doi.org/10.3390/math11224678. | 2023 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Kowalski, Karol, and Nicholas P. Bauman. 2023. “Quantum Flow Algorithms for Simulating Many-Body Systems on Quantum Computers.” Physical Review Letters 131 (20). https://doi.org/10.1103/physrevlett.131.200601. | 2023 | 1.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum |
Ding, Chunyang, Martin Di Federico, Michael Hatridge, Andrew Houck, Sebastien Leger, Jeronimo Martinez, Connie Miao, et al. 2024. “Experimental Advances with the QICK (Quantum Instrumentation Control Kit) for Superconducting Quantum Hardware.” Physical Review Research 6 (1). https://doi.org/10.1103/physrevresearch.6.013305. | 2024 | 1.3.3.03 Squeezed Readout of Quantum Sensors |
Zhao, Huan, Linghan Zhu, Xiangzhi Li, Vigneshwaran Chandrasekaran, Jon Kevin Baldwin, Michael T. Pettes, Andrei Piryatinski, Li Yang, and Han Htoon. 2023. “Manipulating Interlayer Excitons for Near-Infrared Quantum Light Generation.” Nano Letters 23 (23): 11006–12. https://doi.org/10.1021/acs.nanolett.3c03296. | 2023 | 1.3.1.01 Hybrid Quantum Sensors |
Hossain, Md Shafayat, Qi Zhang, Zhiwei Wang, Nikhil Dhale, Wenhao Liu, Maksim Litskevich, Brian Casas, et al. 2024. “Quantum Transport Response of Topological Hinge Modes.” Nature Physics 20 (5): 776–82. https://doi.org/10.1038/s41567-024-02388-1. | 2024 | 1.1.1.02 Controlling and Interacting with Anyons |
Hua, C., D. A. Tennant, A. T. Savici, V. Sedov, G. Sala, and B. Winn. 2024. “Implementation of a Laser–Neutron Pump–Probe Capability for Inelastic Neutron Scattering.” Review of Scientific Instruments 95 (3). https://doi.org/10.1063/5.0181310. | 2024 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Lee, Sangyun, Andrew J. Woods, Minseong Lee, Shengzhi Zhang, Eun Sang Choi, A. O. Scheie, D. A. Tennant, J. Xing, A. S. Sefat, and R. Movshovich. 2024. “Magnetic Field-Temperature Phase Diagram of Spin-1/2 Triangular Lattice Antiferromagnet KYbSe$_2$.” arXiv. https://doi.org/10.48550/ARXIV.2402.06788. | 2024 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Hua, Chengyun, Lucas Lindsay, Yuya Shinohara, and David Alan Tennant. 2023. “Dynamics of Nonequilibrium Magnons in Gapped Heisenberg Antiferromagnets.” arXiv. https://doi.org/10.48550/ARXIV.2310.20617. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Sarkis, Colin L., John W. Villanova, Casey Eichstaedt, Adolfo G. Eguiluz, Jaime A. Fernandez-Baca, Masaaki Matsuda, Jiaqiang Yan, et al. 2023. “Experimental Evidence for Non-Spherical Magnetic Form Factor in Ru$^{3+}$.” arXiv. https://doi.org/10.48550/ARXIV.2311.00078. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Rechciński, Rafał, Aleksei Khindanov, Dmitry I. Pikulin, Jian Liao, Leonid P. Rokhinson, Yong P. Chen, Roman M. Lutchyn, and Jukka I. Väyrynen. 2023. “Influence of Disorder on Antidot Vortex Majorana States in 3D Topological Insulators.” arXiv. https://doi.org/10.48550/ARXIV.2310.03810. | 2023 | 1.1.1.02 Controlling and Interacting with Anyons |
Papaj, Michał. 2023. “Spectroscopic Signatures of Excitonic Order Effect on Quantum Spin Hall Edge States.” arXiv. https://doi.org/10.48550/ARXIV.2310.08810. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Volkoff, T J, and Michael J Martin. 2024. “Saturating the One-Axis Twisting Quantum Cramér-Rao Bound with a Total Spin Readout.” Journal of Physics Communications 8 (1): 015004. https://doi.org/10.1088/2399-6528/ad1dc8. | 2024 | 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Anderson, Dana Z., and Katarzyna Krzyzanowska. 2023. “A Gauge Field Theory of Coherent Matter Waves.” AVS Quantum Science 5 (3). https://doi.org/10.1116/5.0159672. | 2023 | 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Bultrini, Daniel, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, M. Cerezo, Patrick J. Coles, and Lukasz Cincio. 2023. “Unifying and Benchmarking State-of-the-Art Quantum Error Mitigation Techniques.” Quantum 7 (June): 1034. https://doi.org/10.22331/q-2023-06-06-1034. | 2023 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices, 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Bultrini, Daniel, Samson Wang, Piotr Czarnik, Max Hunter Gordon, M. Cerezo, Patrick J. Coles, and Lukasz Cincio. 2023. “The Battle of Clean and Dirty Qubits in the Era of Partial Error Correction.” Quantum 7 (July): 1060. https://doi.org/10.22331/q-2023-07-13-1060. | 2023 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices, 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Larocca, Martín, Frédéric Sauvage, Faris M. Sbahi, Guillaume Verdon, Patrick J. Coles, and M. Cerezo. 2022. “Group-Invariant Quantum Machine Learning.” PRX Quantum 3 (3). https://doi.org/10.1103/prxquantum.3.030341. | 2022 | 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Huerta Alderete, C., Max Hunter Gordon, Frédéric Sauvage, Akira Sone, Andrew T. Sornborger, Patrick J. Coles, and M. Cerezo. 2022. “Inference-Based Quantum Sensing.” Physical Review Letters 129 (19). https://doi.org/10.1103/physrevlett.129.190501. | 2022 | 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Cerezo, M, Akira Sone, Jacob L Beckey, and Patrick J Coles. 2021. “Sub-Quantum Fisher Information.” Quantum Science and Technology 6 (3): 035008. https://doi.org/10.1088/2058-9565/abfbef. | 2021 | 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Temples, Dylan J, Osmond Wen, Karthik Ramanathan, Taylor Aralis, Yen-Yung Chang, Sunil Golwala, Lauren Hsu, et al. 2024. “Performance of a Kinetic Inductance Phonon-Mediated Detector at the NEXUS Cryogenic Facility.” arXiv. https://doi.org/10.48550/ARXIV.2402.04473. | 2024 | 1.3.3.01 Low Background Sensors and Materials |
Schönemann, Rico, Priscila F S Rosa, Sean M Thomas, You Lai, Doan N Nguyen, John Singleton, Eric L Brosha, et al. 2023. “Sudden Adiabaticity Signals Reentrant Bulk Superconductivity in UTe2.” Edited by J C Davis. PNAS Nexus 3 (1). https://doi.org/10.1093/pnasnexus/pgad428. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Ahn, Jeonghwan, Seoung-Hun Kang, Mina Yoon, Panchapakesan Ganesh, and Jaron T. Krogel. 2023. “Stacking Faults and Topological Properties in MnBi2Te4: Reconciling Gapped and Gapless States.” The Journal of Physical Chemistry Letters 14 (40): 9052–59. https://doi.org/10.1021/acs.jpclett.3c01939. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Wang, Yan-Qi, Michał Papaj, and Joel E. Moore. 2023. “Breakdown of Helical Edge State Topologically Protected Conductance in Time-Reversal-Breaking Excitonic Insulators.” Physical Review B 108 (20). https://doi.org/10.1103/physrevb.108.205420. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Murciano, Sara, Pablo Sala, Yue Liu, Roger S. K. Mong, and Jason Alicea. 2023. “Measurement-Altered Ising Quantum Criticality.” Physical Review X 13 (4). https://doi.org/10.1103/physrevx.13.041042. | 2023 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Heath, Joshuah T., Faranak Bahrami, Sangyun Lee, Roman Movshovich, Xiao Chen, Fazel Tafti, and Kevin Bedell. 2023. “Signatures of a Majorana-Fermi Surface in the Kitaev Magnet Ag3LiIr2O6.” Communications Physics 6 (1). https://doi.org/10.1038/s42005-023-01403-w. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Kang, Seoung-Hun, Wei Luo, Sinchul Yeom, Yaling Zheng, and Mina Yoon. 2023. “Two-Dimensional Dirac Semimetal Based on the Alkaline Earth Metal CaP3.” Physical Review Materials 7 (12). https://doi.org/10.1103/physrevmaterials.7.124202. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Kang, Seoung-Hun, Myeongjun Kang, Sang Woon Hwang, Sinchul Yeom, Mina Yoon, Jong Mok Ok, and Sangmoon Yoon. 2023. “Theoretical Investigation of Delafossite-Cu2ZnSnO4 as a Promising Photovoltaic Absorber.” Nanomaterials 13 (24): 3111. https://doi.org/10.3390/nano13243111. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Guguchia, Z., D. J. Gawryluk, S. Shin, Z. Hao, C. Mielke III, D. Das, I. Plokhikh, et al. 2023. “Hidden Magnetism Uncovered in a Charge Ordered Bilayer Kagome Material ScV6Sn6.” Nature Communications 14 (1). https://doi.org/10.1038/s41467-023-43503-9. | 2023 | 1.1.1.02 Controlling and Interacting with Anyons |
Adhikari, Pradip, Anuradha Wijesinghe, Anjali Rathore, Timothy Jinsoo Yoo, Gyehyeon Kim, Sinchul Yeom, Hyoung-Taek Lee, et al. 2024. “Structural Anisotropy in Sb Thin Films.” APL Materials 12 (1). https://doi.org/10.1063/5.0159670. | 2024 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Zhang, Zhuquan, Frank Y. Gao, Jonathan B. Curtis, Zi-Jie Liu, Yu-Che Chien, Alexander von Hoegen, Man Tou Wong, et al. 2024. “Terahertz Field-Induced Nonlinear Coupling of Two Magnon Modes in an Antiferromagnet.” Nature Physics 20 (5): 801–6. https://doi.org/10.1038/s41567-024-02386-3. | 2024 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Zhang, Zhuquan, Frank Y. Gao, Yu-Che Chien, Zi-Jie Liu, Jonathan B. Curtis, Eric R. Sung, Xiaoxuan Ma, et al. 2024. “Terahertz-Field-Driven Magnon Upconversion in an Antiferromagnet.” Nature Physics 20 (5): 788–93. https://doi.org/10.1038/s41567-023-02350-7. | 2024 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Gao, Shang, Ling-Fang Lin, Pontus Laurell, Qiang Chen, Qing Huang, Clarina dela Cruz, Krishnamurthy V. Vemuru, et al. 2024. “Spinon Continuum in the Heisenberg Quantum Chain Compound Sr2V3O9.” Physical Review B 109 (2). https://doi.org/10.1103/physrevb.109.l020402. | 2024 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Dolgirev, Pavel E., Marios H. Michael, Jonathan B. Curtis, Daniel E. Parker, Daniele Nicoletti, Michele Buzzi, Michael Fechner, Andrea Cavalleri, and Eugene Demler. 2024. “Optically Induced Umklapp Shift Currents in Striped Cuprates.” Physical Review B 109 (4). https://doi.org/10.1103/physrevb.109.045150. | 2024 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Koh, Jin Ming, Jason Alicea, and Étienne Lantagne-Hurtubise. 2024. “Correlated Phases in Spin-Orbit-Coupled Rhombohedral Trilayer Graphene.” Physical Review B 109 (3). https://doi.org/10.1103/physrevb.109.035113. | 2024 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Scheie, A. O., Y. Kamiya, Hao Zhang, Sangyun Lee, A. J. Woods, M. O. Ajeesh, M. G. Gonzalez, et al. 2024. “Nonlinear Magnons and Exchange Hamiltonians of the Delafossite Proximate Quantum Spin Liquid Candidates KYbSe2 and NaYbSe2.” Physical Review B 109 (1). https://doi.org/10.1103/physrevb.109.014425. | 2024 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Son, Jun Ho, Jason Alicea, and Olexei I. Motrunich. 2024. “Edge States of Two-Dimensional Time-Reversal Invariant Topological Superconductors with Strong Interactions and Disorder: A View from the Lattice.” Physical Review B 109 (3). https://doi.org/10.1103/physrevb.109.035138. | 2024 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Kowalski, Karol, Nicholas P. Bauman, Guang Hao Low, Martin Roetteler, John J. Rehr, and Fernando D. Vila. 2024. “Capturing Many-Body Correlation Effects with Quantum and Classical Computing.” arXiv. https://doi.org/10.48550/ARXIV.2402.11418. | 2024 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Kowalski, Karol, and Nicholas P. Bauman. 2023. “Quantum Flow Algorithms for Simulating Many-Body Systems on Quantum Computers.” Physical Review Letters 131 (20). https://doi.org/10.1103/physrevlett.131.200601. | 2023 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Shi, Yue, Tommy Nguyen, Samuel Stein, Tim Stavenger, Marvin Warner, Martin Roetteler, Torsten Hoefler, and Ang Li. 2023. “A Reference Implementation for a Quantum Message Passing Interface.” Proceedings of the SC ’23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, November. https://doi.org/10.1145/3624062.3624212. | 2023 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Hua, Fei, Meng Wang, Gushu Li, Bo Peng, Chenxu Liu, Muqing Zheng, Samuel Stein, et al. 2023. “QASMTrans: A QASM Quantum Transpiler Framework for NISQ Devices.” Proceedings of the SC ’23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, November. https://doi.org/10.1145/3624062.3624222. | 2023 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Sears, J., Y. Shen, M. J. Krogstad, H. Miao, Jiaqiang Yan, Subin Kim, W. He, et al. 2023. “Stacking Disorder in α−RuCl3 Investigated via x-Ray Three-Dimensional Difference Pair Distribution Function Analysis.” Physical Review B 108 (14). https://doi.org/10.1103/physrevb.108.144419. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Zhang, Heda, Andrew F. May, Hu Miao, Brian C. Sales, David G. Mandrus, Stephen E. Nagler, Michael A. McGuire, and Jiaqiang Yan. 2023. “Sample-Dependent and Sample-Independent Thermal Transport Properties of α−RuCl3.” Physical Review Materials 7 (11). https://doi.org/10.1103/physrevmaterials.7.114403. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Zhang, Heda, Michael A. McGuire, Andrew F. May, Hsin-Yun Chao, Qiang Zheng, Miaofang Chi, Brian C. Sales, et al. 2024. “Stacking Disorder and Thermal Transport Properties of α−RuCl3.” Physical Review Materials 8 (1). https://doi.org/10.1103/physrevmaterials.8.014402. | 2024 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Morgan, Zachary, Iris Ye, Colin L. Sarkis, Xiaoping Wang, Stephen Nagler, and Jiaqiang Yan. 2024. “Structure Transition and Zigzag Magnetic Order in Ir/Rh-Substituted Honeycomb Lattice α−RuCl3.” Physical Review Materials 8 (1). https://doi.org/10.1103/physrevmaterials.8.016201. | 2024 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Kumaran, Keerthi, Manas Sajjan, Sangchul Oh, and Sabre Kais. 2024. “Random Projection Using Random Quantum Circuits.” Physical Review Research 6 (1). https://doi.org/10.1103/physrevresearch.6.013010. | 2024 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Zheng, Muqing, Bo Peng, Ang Li, Xiu Yang, and Karol Kowalski. 2023. “Unleashed from Constrained Optimization: Quantum Computing for Quantum Chemistry Employing Generator Coordinate Method.” arXiv. https://doi.org/10.48550/ARXIV.2312.07691. | 2023 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Alexeev, Yuri, Maximilian Amsler, Paul Baity, Marco Antonio Barroca, Sanzio Bassini, Torey Battelle, Daan Camps, et al. 2023. “Quantum-Centric Supercomputing for Materials Science: A Perspective on Challenges and Future Directions.” arXiv. https://doi.org/10.48550/ARXIV.2312.09733. | 2023 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Wang, Ying, Valeria Lauter, Olga Maximova, Shiva T. Konakanchi, Pramey Upadhyaya, Jong Keum, Haile Ambaye, et al. 2023. “Exchange Coupling in Bi2Se3/EuSe Heterostructures and Evidence of Interfacial Antiferromagnetic Order Formation.” Physical Review B 108 (19). https://doi.org/10.1103/physrevb.108.195308. | 2023 | 1.1.1.02 Controlling and Interacting with Anyons |
Wu, Anbang, Yufei Ding, and Ang Li. 2023. “QuComm: Optimizing Collective Communication for Distributed Quantum Computing.” 56th Annual IEEE/ACM International Symposium on Microarchitecture, October. https://doi.org/10.1145/3613424.3614253. | 2023 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Wang, Meng, Fei Hua, Chenxu Liu, Nicholas Bauman, Karol Kowalski, Daniel Claudino, Travis Humble, Prashant Nair, and Ang Li. 2023. “Enabling Scalable VQE Simulation on Leading HPC Systems.” Proceedings of the SC ’23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, November. https://doi.org/10.1145/3624062.3624221. | 2023 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Selvarajan, Raja, Manas Sajjan, Travis S. Humble, and Sabre Kais. 2023. “Dimensionality Reduction with Variational Encoders Based on Subsystem Purification.” Mathematics 11 (22): 4678. https://doi.org/10.3390/math11224678. | 2023 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Varnavides, Georgios, Amir Yacoby, Claudia Felser, and Prineha Narang. 2023. “Charge Transport and Hydrodynamics in Materials.” Nature Reviews Materials 8 (11): 726–41. https://doi.org/10.1038/s41578-023-00597-3. | 2023 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Rizzo, Daniel J., Jin Zhang, Bjarke S. Jessen, Francesco L. Ruta, Matthew Cothrine, Jiaqiang Yan, David G. Mandrus, et al. 2023. “Polaritonic Probe of an Emergent 2D Dipole Interface.” Nano Letters 23 (18): 8426–35. https://doi.org/10.1021/acs.nanolett.3c01611. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Yao, Weiliang, Qing Huang, Tao Xie, Andrey Podlesnyak, Alexander Brassington, Chengkun Xing, Ranuri S. Dissanayaka Mudiyanselage, et al. 2023. “Continuous Spin Excitations in the Three-Dimensional Frustrated Magnet K2Ni2(SO4)3.” Physical Review Letters 131 (14). https://doi.org/10.1103/physrevlett.131.146701. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Scheie, A. O., E. A. Ghioldi, J. Xing, J. A. M. Paddison, N. E. Sherman, M. Dupont, L. D. Sanjeewa, et al. 2023. “Proximate Spin Liquid and Fractionalization in the Triangular Antiferromagnet KYbSe2.” Nature Physics 20 (1): 74–81. https://doi.org/10.1038/s41567-023-02259-1. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Scheie, A., Pyeongjae Park, J. W. Villanova, G. E. Granroth, C. L. Sarkis, Hao Zhang, M. B. Stone, et al. 2023. “Spin Wave Hamiltonian and Anomalous Scattering in NiPS3.” Physical Review B 108 (10). https://doi.org/10.1103/physrevb.108.104402. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Xie, Ying-Ming, Étienne Lantagne-Hurtubise, Andrea F. Young, Stevan Nadj-Perge, and Jason Alicea. 2023. “Gate-Defined Topological Josephson Junctions in Bernal Bilayer Graphene.” Physical Review Letters 131 (14). https://doi.org/10.1103/physrevlett.131.146601. | 2023 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Goryca, Mateusz, Xiaoyu Zhang, Justin Ramberger, Justin D. Watts, Cristiano Nisoli, Chris Leighton, Peter Schiffer, and Scott A. Crooker. 2023. “Deconstructing Magnetization Noise: Degeneracies, Phases, and Mobile Fractionalized Excitations in Tetris Artificial Spin Ice.” Proceedings of the National Academy of Sciences 120 (43). https://doi.org/10.1073/pnas.2310777120. | 2023 | 1.3.3.03 Squeezed Readout of Quantum Sensors |
Fuchs, Christopher, Saquib Shamim, Pragya Shekhar, Lena Fürst, Johannes Kleinlein, Jukka I. Väyrynen, Hartmut Buhmann, and Laurens W. Molenkamp. 2023. “Kondo Interaction of Quantum Spin Hall Edge Channels with Charge Puddles.” Physical Review B 108 (20). https://doi.org/10.1103/physrevb.108.205302. | 2023 | 1.1.1.02 Controlling and Interacting with Anyons |
Lüpke, Felix, Marek Kolmer, Jiaqiang Yan, Hao Chang, Paolo Vilmercati, Hanno H. Weitering, Wonhee Ko, and An-Ping Li. 2023. “Anti-Site Defect-Induced Disorder in Compensated Topological Magnet MnBi2-XSbxTe4.” Communications Materials 4 (1). https://doi.org/10.1038/s43246-023-00408-w. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Li, Xiangzhi, Andrew C. Jones, Junho Choi, Huan Zhao, Vigneshwaran Chandrasekaran, Michael T. Pettes, Andrei Piryatinski, et al. 2023. “Proximity-Induced Chiral Quantum Light Generation in Strain-Engineered WSe2/NiPS3 Heterostructures.” Nature Materials 22 (11): 1311–16. https://doi.org/10.1038/s41563-023-01645-7. | 2023 | 1.3.1.01 Hybrid Quantum Sensors |
Oh, Sangchul, and Sabre Kais. 2023. “Cutoff Phenomenon and Entropic Uncertainty for Random Quantum Circuits.” Electronic Structure 5 (3): 035004. https://doi.org/10.1088/2516-1075/acf2d3. | 2023 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Li, Junxu, Barbara A. Jones, and Sabre Kais. 2023. “Toward Perturbation Theory Methods on a Quantum Computer.” Science Advances 9 (19). https://doi.org/10.1126/sciadv.adg4576. | 2023 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Sajjan, Manas, Vinit Singh, Raja Selvarajan, and Sabre Kais. 2023. “Imaginary Components of Out-of-Time-Order Correlator and Information Scrambling for Navigating the Learning Landscape of a Quantum Machine Learning Model.” Physical Review Research 5 (1). https://doi.org/10.1103/physrevresearch.5.013146. | 2023 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Sajjan, Manas, Rishabh Gupta, Sumit Suresh Kale, Vinit Singh, Keerthi Kumaran, and Sabre Kais. 2023. “Physics-Inspired Quantum Simulation of Resonating Valence Bond States─A Prototypical Template for a Spin-Liquid Ground State.” The Journal of Physical Chemistry A 127 (41): 8751–64. https://doi.org/10.1021/acs.jpca.3c05172. | 2023 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Muruganandam, Varadharajan, Manas Sajjan, and Sabre Kais. 2023. “Foray into the Topology of Poly‐bi‐[8]‐annulenylene.” Natural Sciences 3 (4). https://doi.org/10.1002/ntls.20230015. | 2023 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Li, Ang, Alessandro Baroni, Ionel Stetcu, and Travis S. Humble. 2023. “Deep Quantum Circuit Simulations of Low-Energy Nuclear States.” ArXiv. https://doi.org/10.48550/ARXIV.2310.17739. | 2023 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Feldman, Matthew, Tyler Volkoff, Zoe Holmes, Seongjin Hong, Claire Marvinney, Raphael Pooser, Andrew Sornborger, and Alberto M. Marino. 2023. “Towards a Continuous Variable Quantum Compiler.” Optica Quantum 2.0 Conference and Exhibition. https://doi.org/10.1364/quantum.2023.qth4b.5. | 2023 | 1.2.2.01 CVQCP: Continuous Variable Quantum Computing with Photons, 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Qin, Juehang, and Rafael F. Lang. 2023. “Fast Estimation of the Look-Elsewhere Effect Using Gaussian Random Fields.” ArXiv. https://doi.org/10.48550/ARXIV.2306.01713. | 2023 | 1.3.3.03 Squeezed Readout of Quantum Sensors |
Rustagi, Avinash, Iacopo Bertelli, Toeno van der Sar, and Pramey Upadhyaya. 2020. “Sensing Chiral Magnetic Noise via Quantum Impurity Relaxometry.” Physical Review B 102 (22). https://doi.org/10.1103/physrevb.102.220403. | 2020 | 1.3.1.01 Hybrid Quantum Sensors |
Solanki, Abhishek B., Simeon I. Bogdanov, Mohammad M. Rahman, Avinash Rustagi, Neil R. Dilley, Tingting Shen, Wenqi Tong, et al. 2022. “Electric Field Control of Interaction between Magnons and Quantum Spin Defects.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.l012025. | 2022 | 1.3.1.01 Hybrid Quantum Sensors |
Cheng, Guanghui, Mohammad Mushfiqur Rahman, Zhiping He, Andres Llacsahuanga Allcca, Avinash Rustagi, Kirstine Aggerbeck Stampe, Yanglin Zhu, et al. 2022. “Emergence of Electric-Field-Tunable Interfacial Ferromagnetism in 2D Antiferromagnet Heterostructures.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-34812-6. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Cheng, Guanghui, Mohammad Mushfiqur Rahman, Andres Llacsahuanga Allcca, Avinash Rustagi, Xingtao Liu, Lina Liu, Lei Fu, et al. 2023. “Electrically Tunable Moiré Magnetism in Twisted Double Bilayers of Chromium Triiodide.” Nature Electronics 6 (6): 434–42. https://doi.org/10.1038/s41928-023-00978-0. | 2023 | 1.1.1.02 Controlling and Interacting with Anyons |
Konakanchi, Shiva T., Jukka I. Väyrynen, Yong P. Chen, Pramey Upadhyaya, and Leonid P. Rokhinson. 2023. “Platform for Braiding Majorana Modes with Magnetic Skyrmions.” Physical Review Research 5 (3). https://doi.org/10.1103/physrevresearch.5.033109. | 2023 | 1.3.1.01 Hybrid Quantum Sensors |
Kudyshev, Zhaxylyk A., Demid Sychev, Zachariah Martin, Omer Yesilyurt, Simeon I. Bogdanov, Xiaohui Xu, Pei-Gang Chen, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2023. “Machine Learning Assisted Quantum Super-Resolution Microscopy.” Nature Communications 14 (1). https://doi.org/10.1038/s41467-023-40506-4. | 2023 | 1.2.2.07 MLAO: Machine Learning Assisted Optimization of Quantum Device Design |
Yesilyurt, Omer, Samuel Peana, Vahagn Mkhitaryan, Karthik Pagadala, Vladimir M. Shalaev, Alexander V. Kildishev, and Alexandra Boltasseva. 2023. “Fabrication-Conscious Neural Network Based Inverse Design of Single-Material Variable-Index Multilayer Films.” Nanophotonics 12 (5): 993–1006. https://doi.org/10.1515/nanoph-2022-0537. | 2023 | 1.2.2.07 MLAO: Machine Learning Assisted Optimization of Quantum Device Design |
Xu, Xiaohui, Zachariah O. Martin, Michael Titze, Yongqiang Wang, Demid Sychev, Jacob Henshaw, Alexei S. Lagutchev, et al. 2023. “Fabrication of Single Color Centers in Sub-50 Nm Nanodiamonds Using Ion Implantation.” Nanophotonics 12 (3): 485–94. https://doi.org/10.1515/nanoph-2022-0678. | 2023 | 1.3.1.01 Hybrid Quantum Sensors |
Martin, Zachariah O., Alexander Senichev, Samuel Peana, Benjamin J. Lawrie, Alexei S. Lagutchev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2023. “Photophysics of Intrinsic Single‐Photon Emitters in Silicon Nitride at Low Temperatures.” Advanced Quantum Technologies 6 (11). https://doi.org/10.1002/qute.202300099. | 2023 | 1.3.1.01 Hybrid Quantum Sensors |
Volkoff, T. J., and Yiğit Subaşı. 2022. “Ancilla-Free Continuous-Variable SWAP Test.” ArXiv. https://doi.org/10.48550/ARXIV.2202.09923. | 2022 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Somma, Rolando D., and Yigit Subasi. 2020. “Complexity of Quantum State Verification in the Quantum Linear Systems Problem.” ArXiv. https://doi.org/10.48550/ARXIV.2007.15698. | 2021 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Gu, Shouzhen, Rolando D. Somma, and Burak Şahinoğlu. 2021. “Fast-Forwarding Quantum Evolution.” ArXiv. https://doi.org/10.48550/ARXIV.2105.07304. | 2021 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Şahinoğlu, Burak, and Rolando D. Somma. 2020. “Hamiltonian Simulation in the Low-Energy Subspace.” ArXiv. https://doi.org/10.48550/ARXIV.2006.02660. | 2020 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Hua, Chengyun, Claire E. Marvinney, Seongjin Hong, Matthew Feldman, Yun‐Yi Pai, Michael Chilcote, Joshua Rabinowitz, Raphael C. Pooser, Alberto M. Marino, and Benjamin J. Lawrie. 2023. “Quantum Enhanced Probes of Magnetic Circular Dichroism.” Advanced Quantum Technologies, September. https://doi.org/10.1002/qute.202300126. | 2023 | 1.3.3.03 Squeezed Readout of Quantum Sensors |
Somma, Rolando D., and Yiğit Subaşı. 2021. “Complexity of Quantum State Verification in the Quantum Linear Systems Problem.” PRX Quantum 2 (1). https://doi.org/10.1103/prxquantum.2.010315. | 2021 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Gu, Shouzhen, Rolando D. Somma, and Burak Şahinoğlu. 2021. “Fast-Forwarding Quantum Evolution.” Quantum 5 (November): 577. https://doi.org/10.22331/q-2021-11-15-577. | 2021 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Ahn, Jeonghwan, Seoung-Hun Kang, Mao-Hua Du, Mina Yoon, Jaron T. Krogel, and Fernando A. Reboredo. 2023. “Procedures for Assessing the Stability of Proposed Topological Materials.” The Journal of Physical Chemistry C 127 (34): 17021–28. https://doi.org/10.1021/acs.jpcc.3c02173. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Mondal, Ashok, Chandan Biswas, Sehwan Park, Wujoon Cha, Seoung-Hun Kang, Mina Yoon, Soo Ho Choi, Ki Kang Kim, and Young Hee Lee. 2023. “Low Ohmic Contact Resistance and High on/off Ratio in Transition Metal Dichalcogenides Field-Effect Transistors via Residue-Free Transfer.” Nature Nanotechnology 19 (1): 34–43. https://doi.org/10.1038/s41565-023-01497-x. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Wang, Meng, Bo Fang, Ang Li, and Prashant Nair. 2023. “Efficient QAOA Optimization Using Directed Restarts and Graph Lookup.” Proceedings of the 2023 International Workshop on Quantum Classical Cooperative, August. https://doi.org/10.1145/3588983.3596680. | 2023 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Li, Shaozhi, Lun-Hui Hu, Rui-Xing Zhang, and Satoshi Okamoto. 2023. “Topological Superconductivity from Forward Phonon Scatterings.” Communications Physics 6 (1). https://doi.org/10.1038/s42005-023-01311-z. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Zhang, Shengzhi, Sangyun Lee, Andrew J. Woods, William K. Peria, Sean M. Thomas, Roman Movshovich, Eric Brosha, et al. 2023. “Electronic and Magnetic Phase Diagrams of the Kitaev Quantum Spin Liquid Candidate Na2Co2TeO6.” Physical Review B 108 (6). https://doi.org/10.1103/physrevb.108.064421. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Mueller, Niklas, Joseph A. Carolan, Andrew Connelly, Zohreh Davoudi, Eugene F. Dumitrescu, and Kübra Yeter-Aydeniz. 2023. “Quantum Computation of Dynamical Quantum Phase Transitions and Entanglement Tomography in a Lattice Gauge Theory.” PRX Quantum 4 (3). https://doi.org/10.1103/prxquantum.4.030323. | 2023 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Gu, Chenyi, Z. H. Sun, G. Hagen, and T. Papenbrock. 2023. “Entanglement Entropy of Nuclear Systems.” ArXiv. https://doi.org/10.48550/ARXIV.2303.04799. | 2023 | 1.2.2.05 Strong interactions and dynamics: from quarks to nuclei |
Kiss, Oriel, Michele Grossi, Pavel Lougovski, Federico Sanchez, Sofia Vallecorsa, and Thomas Papenbrock. 2022. “Quantum Computing of the Li6 Nucleus via Ordered Unitary Coupled Clusters.” Physical Review C 106 (3). https://doi.org/10.1103/physrevc.106.034325. | 2022 | 1.2.2.05 Strong interactions and dynamics: from quarks to nuclei |
Sun, Z. H., C. A. Bell, G. Hagen, and T. Papenbrock. 2022. “How to Renormalize Coupled Cluster Theory.” Physical Review C 106 (6). https://doi.org/10.1103/physrevc.106.l061302. | 2022 | 1.2.2.05 Strong interactions and dynamics: from quarks to nuclei |
Sun, Z. H., G. Hagen, and T. Papenbrock. 2023. “Coupled-Cluster Theory for Strong Entanglement in Nuclei.” Physical Review C 108 (1). https://doi.org/10.1103/physrevc.108.014307. | 2023 | 1.2.2.05 Strong interactions and dynamics: from quarks to nuclei |
Guo, Yucheng, Mason Klemm, Ji Seop Oh, Yaofeng Xie, Bing-Hua Lei, Luca Moreschini, Cheng Chen, et al. 2023. “Spectral Evidence for Unidirectional Charge Density Wave in Detwinned BaNi2As2.” Physical Review B 108 (8). https://doi.org/10.1103/physrevb.108.l081104. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Lv, Chenwei, Ren Zhang, and Qi Zhou. 2023. “Building Krylov Complexity from Circuit Complexity.” arXiv. https://doi.org/10.48550/ARXIV.2303.07343. | 2023 | 1.2.2.04 QSTQM‐BEC: Quantum simulation of topological quantum materials and fiel |
Zhang, Shaoliang, Chenwei Lv, and Qi Zhou. 2023. “Synthetic Tensor Gauge Fields.” arXiv. https://doi.org/10.48550/ARXIV.2306.15663. | 2020 | 1.2.2.04 QSTQM‐BEC: Quantum simulation of topological quantum materials and fiel |
Illa, Marc, and Martin J. Savage. 2023. “Multi-Neutrino Entanglement and Correlations in Dense Neutrino Systems.” Physical Review Letters 130 (22). https://doi.org/10.1103/physrevlett.130.221003. | 2023 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Villanova, John W., Allen O. Scheie, D. Alan Tennant, Satoshi Okamoto, and Tom Berlijn. 2023. “First-Principles Derivation of Magnetic Interactions in the Triangular Quantum Spin Liquid Candidates KYbCh2 (Ch=S,Se,Te) and AYbSe2 (A=Na,Rb).” Physical Review Research 5 (3). https://doi.org/10.1103/physrevresearch.5.033050. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Nirala, Gaurav, Siva T. Pradyumna, Ashok Kumar, and Alberto M. Marino. 2023. “Information Encoding in the Spatial Correlations of Entangled Twin Beams.” Science Advances 9 (22). https://doi.org/10.1126/sciadv.adf9161. | 2023 | 1.2.2.01 CVQCP: Continuous Variable Quantum Computing with Photons |
Cookmeyer, Tessa, and Joel E. Moore. 2023. “Dynamics of Fractionalized Mean-Field Theories: Consequences for Kitaev Materials.” Physical Review B 107 (22). https://doi.org/10.1103/physrevb.107.224428. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Curtis, Jonathan B., Ankit Disa, Michael Fechner, Andrea Cavalleri, and Prineha Narang. 2023. “Dynamics of Photoinduced Ferromagnetism in Oxides with Orbital Degeneracy.” Physical Review Research 5 (1). https://doi.org/10.1103/physrevresearch.5.013204. | 2023 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Welakuh, Davis M., and Prineha Narang. 2023. “Tunable Nonlinearity and Efficient Harmonic Generation from a Strongly Coupled Light–Matter System.” ACS Photonics 10 (2): 383–93. https://doi.org/10.1021/acsphotonics.2c00966. | 2023 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Lane, Christopher, Ruiqi Zhang, Bernardo Barbiellini, Robert S. Markiewicz, Arun Bansil, Jianwei Sun, and Jian-Xin Zhu. 2023. “Competing Incommensurate Spin Fluctuations and Magnetic Excitations in Infinite-Layer Nickelate Superconductors.” Communications Physics 6 (1). https://doi.org/10.1038/s42005-023-01213-0. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Curtis, Jonathan B., Ioannis Petrides, and Prineha Narang. 2023. “Finite-Momentum Instability of a Dynamical Axion Insulator.” Physical Review B 107 (20). https://doi.org/10.1103/physrevb.107.205118. | 2023 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Luo, Wei, Mao-Hua Du, Fernando A Reboredo, and Mina Yoon. 2023. “Non-Volatile Electric Control of Magnetic and Topological Properties of MnBi2Te4 Thin Films *.” 2D Materials 10 (3): 035008. https://doi.org/10.1088/2053-1583/accaf7. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Weiland, Ashley, Frederico B. Santos, Joe D. Thompson, Eric D. Bauer, Sean M. Thomas, and Priscila F. S. Rosa. 2023. “Differences in the Resistive and Thermodynamic Properties of the Single Crystalline Chiral Superconductor Candidate SrPtAs.” Physical Review Materials 7 (5). https://doi.org/10.1103/physrevmaterials.7.054802. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
McGuire, Michael A., Heda Zhang, Andrew F. May, Satoshi Okamoto, Robert G. Moore, Xiaoping Wang, Clément Girod, Sean M. Thomas, Filip Ronning, and Jiaqiang Yan. 2023. “Superconductivity by Alloying the Topological Insulator SnBi2Te4.” Physical Review Materials 7 (3). https://doi.org/10.1103/physrevmaterials.7.034802. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Multer, Daniel, Jia-Xin Yin, Md. Shafayat Hossain, Xian Yang, Brian C. Sales, Hu Miao, William R. Meier, et al. 2023. “Imaging Real-Space Flat Band Localization in Kagome Magnet FeSn.” Communications Materials 4 (1). https://doi.org/10.1038/s43246-022-00328-1. | 2023 | 1.1.1.02 Controlling and Interacting with Anyons |
Cole, Andrew, Alenna Streeter, Adolfo O. Fumega, Xiaohan Yao, Zhi-Cheng Wang, Erxi Feng, Huibo Cao, Jose L. Lado, Stephen E. Nagler, and Fazel Tafti. 2023. “Extreme Sensitivity of the Magnetic Ground State to Halide Composition in FeCl3−xBrx.” Physical Review Materials 7 (6). https://doi.org/10.1103/physrevmaterials.7.064401. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Zhang, Song-Bo, Xiaoxiong Liu, Md Shafayat Hossain, Jia-Xin Yin, M. Zahid Hasan, and Titus Neupert. 2023. “Emergent Edge Modes in Shifted Quasi-One-Dimensional Charge Density Waves.” Physical Review Letters 130 (10). https://doi.org/10.1103/physrevlett.130.106203. | 2023 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Curtis, Jonathan B., Nicholas R. Poniatowski, Yonglong Xie, Amir Yacoby, Eugene Demler, and Prineha Narang. 2023. “Stabilizing Fluctuating Spin-Triplet Superconductivity in Graphene via Induced Spin-Orbit Coupling.” Physical Review Letters 130 (19). https://doi.org/10.1103/physrevlett.130.196001. | 2023 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Moore, Robert G., Qiangsheng Lu, Hoyeon Jeon, Xiong Yao, Tyler Smith, Yun‐Yi Pai, Michael Chilcote, et al. 2023. “Monolayer Superconductivity and Tunable Topological Electronic Structure at the Fe(Te,Se)/Bi2Te3 Interface.” Advanced Materials 35 (22). https://doi.org/10.1002/adma.202210940. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Cheng, Guanghui, Mohammad Mushfiqur Rahman, Andres Llacsahuanga Allcca, Avinash Rustagi, Xingtao Liu, Lina Liu, Lei Fu, et al. 2023. “Electrically Tunable Moiré Magnetism in Twisted Double Bilayers of Chromium Triiodide.” Nature Electronics 6 (6): 434–42. https://doi.org/10.1038/s41928-023-00978-0. | 2023 | 1.1.1.02 Controlling and Interacting with Anyons |
Cohen, Liam A., Noah L. Samuelson, Taige Wang, Kai Klocke, Cian C. Reeves, Takashi Taniguchi, Kenji Watanabe, Sagar Vijay, Michael P. Zaletel, and Andrea F. Young. 2023. “Nanoscale Electrostatic Control in Ultraclean van Der Waals Heterostructures by Local Anodic Oxidation of Graphite Gates.” Nature Physics 19 (10): 1502–8. https://doi.org/10.1038/s41567-023-02114-3. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Yazdani, Ali, Felix von Oppen, Bertrand I. Halperin, and Amir Yacoby. 2023. “Hunting for Majoranas.” Science 380 (6651). https://doi.org/10.1126/science.ade0850. | 2023 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Papaj, Michał, and Cyprian Lewandowski. 2023. “Probing Correlated States with Plasmons.” Science Advances 9 (17). https://doi.org/10.1126/sciadv.adg3262. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Klein, Julian, Benjamin Pingault, Matthias Florian, Marie-Christin Heißenbüttel, Alexander Steinhoff, Zhigang Song, Kierstin Torres, et al. 2023. “The Bulk van Der Waals Layered Magnet CrSBr Is a Quasi-1D Material.” ACS Nano 17 (6): 5316–28. https://doi.org/10.1021/acsnano.2c07316. | 2023 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Farrell, Roland C., Ivan A. Chernyshev, Sarah J. M. Powell, Nikita A. Zemlevskiy, Marc Illa, and Martin J. Savage. 2023. “Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions. I. Axial Gauge.” Physical Review D 107 (5). https://doi.org/10.1103/physrevd.107.054512. | 2023 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits, 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure, 1.2.2.05 Strong interactions and dynamics: from quarks to nuclei, 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Farrell, Roland C., Ivan A. Chernyshev, Sarah J. M. Powell, Nikita A. Zemlevskiy, Marc Illa, and Martin J. Savage. 2023. “Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions. II. Single-Baryon β-Decay in Real Time.” Physical Review D 107 (5). https://doi.org/10.1103/physrevd.107.054513. | 2023 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure, 1.2.2.02 QSTQC: Quantum Simulations on Trapped‐Ion Quantum Computers (disabled), 1.2.2.05 Strong interactions and dynamics: from quarks to nuclei |
Li, Guangjie, Elio J. König, and Jukka I. Väyrynen. 2023. “Topological Symplectic Kondo Effect.” Physical Review B 107 (20). https://doi.org/10.1103/physrevb.107.l201401. | 2023 | 1.1.1.02 Controlling and Interacting with Anyons |
Bieniek, Maciej, Jukka I. Väyrynen, Gang Li, Titus Neupert, and Ronny Thomale. 2023. “Theory of Glide Symmetry Protected Helical Edge States in a WTe2 Monolayer.” Physical Review B 107 (19). https://doi.org/10.1103/physrevb.107.195105. | 2023 | 1.1.1.02 Controlling and Interacting with Anyons |
Brahlek, Matthew, and Robert G. Moore. 2023. “Surface-State Limbo.” Nature Physics 19 (7): 924–25. https://doi.org/10.1038/s41567-023-02015-5. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Senichev, Alexander, Samuel Peana, Zachariah O. Martin, Omer Yesilyurt, Demid Sychev, Alexei S. Lagutchev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2022. “Silicon Nitride Waveguides with Intrinsic Single-Photon Emitters for Integrated Quantum Photonics.” ACS Photonics 9 (10): 3357–65. https://doi.org/10.1021/acsphotonics.2c00750. | 2022 | 1.3.1.01 Hybrid Quantum Sensors |
Sajjan, Manas, Hadiseh Alaeian, and Sabre Kais. 2022. “Magnetic Phases of Spatially Modulated Spin-1 Chains in Rydberg Excitons: Classical and Quantum Simulations.” The Journal of Chemical Physics 157 (22). https://doi.org/10.1063/5.0128283. | 2022 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Adams, Duncan, Daniel Baxter, Hannah Day, Rouven Essig, and Yonatan Kahn. 2023. “Measuring the Migdal Effect in Semiconductors for Dark Matter Detection.” Physical Review D 107 (4). https://doi.org/10.1103/physrevd.107.l041303. | 2023 | 1.3.3.01 Low Background Sensors and Materials |
Yang, Xian P., Yigui Zhong, Sougata Mardanya, Tyler A. Cochran, Ramakanta Chapai, Akifumi Mine, Junyi Zhang, et al. 2023. “Coexistence of Bulk-Nodal and Surface-Nodeless Cooper Pairings in a Superconducting Dirac Semimetal.” Physical Review Letters 130 (4). https://doi.org/10.1103/physrevlett.130.046402. | 2023 | 1.1.1.02 Controlling and Interacting with Anyons |
Tay, D., T. Shang, Priscila F. S. Rosa, F. B. Santos, J. D. Thompson, Z. Fisk, H.-R. Ott, and T. Shiroka. 2023. “Nodeless Superconductivity in the Noncentrosymmetric Compound ThIrSi.” Physical Review B 107 (6). https://doi.org/10.1103/physrevb.107.064507. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Kirby, Robert J., Angela Montanaro, Francesca Giusti, André Koch-Liston, Shiming Lei, Ioannis Petrides, Prineha Narang, et al. 2023. “Ultrafast Dynamics of the Topological Semimetal GdSbxTe2–x–δ in the Presence and Absence of a Charge Density Wave.” The Journal of Physical Chemistry C 127 (1): 577–84. https://doi.org/10.1021/acs.jpcc.2c06120. | 2023 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Yan, J.-Q., and M. A. McGuire. 2023. “Self-Selecting Vapor Growth of Transition-Metal-Halide Single Crystals.” Physical Review Materials 7 (1). https://doi.org/10.1103/physrevmaterials.7.013401. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Li, Guangjie, Yuval Oreg, and Jukka I. Väyrynen. 2023. “Multichannel Topological Kondo Effect.” Physical Review Letters 130 (6). https://doi.org/10.1103/physrevlett.130.066302. | 2023 | 1.1.1.02 Controlling and Interacting with Anyons |
Menon, Varun, Nicholas E. Sherman, Maxime Dupont, Allen O. Scheie, D. Alan Tennant, and Joel E. Moore. 2023. “Multipartite Entanglement in the One-Dimensional Spin- 12 Heisenberg Antiferromagnet.” Physical Review B 107 (5). https://doi.org/10.1103/physrevb.107.054422. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Cookmeyer, Tessa, and Joel E. Moore. 2022. “Dynamics of Fractionalized Mean-Field Theories: Consequences for Kitaev Materials.” ArXiv. https://doi.org/10.48550/ARXIV.2206.04788. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Papaj, Michał, and Cyprian Lewandowski. 2022. “Probing Correlated States with Plasmonic Origami.” arXiv. https://doi.org/10.48550/ARXIV.2212.01367. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Papaj, Michał, and Joel E. Moore. 2022. “Current-Enabled Optical Conductivity of Superconductors.” Physical Review B 106 (22). https://doi.org/10.1103/physrevb.106.l220504. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Scheie, A., Pyeongjae Park, J. W. Villanova, G. E. Granroth, C. L. Sarkis, Hao Zhang, M. B. Stone, et al. 2023. “Spin Wave Hamiltonian and Anomalous Scattering in NiPS$_3$.” ArXiv. https://doi.org/10.48550/ARXIV.2302.07242. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Zhang, Heda, Andrew May, Hu Miao, Brian Sales, David Mandrus, Stephen Nagler, Michael McGuire, and Jiaqiang Yan. 2023. “The Sample-Dependent and Sample-Independent Thermal Transport Properties of $α$-RuCl$_3$.” ArXiv. https://doi.org/10.48550/ARXIV.2303.02098. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Zhang, Heda, Michael A McGuire, Andrew F May, Joy Chao, Qiang Zheng, Miaofang Chi, Brian C Sales, et al. 2023. “Stacking Disorder and Thermal Transport Properties of $α$-RuCl$_3$.” ArXiv. https://doi.org/10.48550/ARXIV.2303.03682. | 2023 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Czajka, Peter, Tong Gao, Max Hirschberger, Paula Lampen-Kelley, Arnab Banerjee, Nicholas Quirk, David G. Mandrus, Stephen E. Nagler, and N. P. Ong. 2022. “Planar Thermal Hall Effect of Topological Bosons in the Kitaev Magnet α-RuCl3.” Nature Materials 22 (1): 36–41. https://doi.org/10.1038/s41563-022-01397-w. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Miao, Hu, and Gábor B. Halász. 2022. “Structural Tweaking of 2D Quantum Magnetism.” Nature Materials 22 (1): 8–9. https://doi.org/10.1038/s41563-022-01445-5. | 2022 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Murciano, Sara, Pablo Sala, Yue Liu, Roger S. K. Mong, and Jason Alicea. 2023. “Measurement-Altered Ising Quantum Criticality.” ArXiv. https://doi.org/10.48550/ARXIV.2302.04325. | 2023 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Ko, Wonhee, Seoung-Hun Kang, Jason Lapano, Hao Chang, Jacob Teeter, Hoyeon Jeon, Matthew Brahlek, Mina Yoon, Robert G. Moore, and An-Ping Li. 2023. “Interplay between Topological States and Rashba States as Manifested on Surface Steps at Room Temperature.” arXiv. https://doi.org/10.48550/ARXIV.2301.06266. | 2023 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Woodworth, Timothy S., Carla Hermann-Avigliano, Kam Wai Clifford Chan, and Alberto M. Marino. 2022. “Transmission Estimation at the Quantum Cramér-Rao Bound with Macroscopic Quantum Light.” EPJ Quantum Technology 9 (1). https://doi.org/10.1140/epjqt/s40507-022-00154-x. | 2022 | 1.3.3.03 Squeezed Readout of Quantum Sensors |
Gowrishankar, Meenambika, Jerimiah Wright, Daniel Claudino, Phillip Lotshaw, Thien Nguyen, Alex McCaskey, and Travis Humble. 2022. “Numerical Simulations of Noisy Quantum Circuits for Computational Chemistry.” 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), September. https://doi.org/10.1109/qce53715.2022.00128. | 2022 | 1.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum |
Dasgupta, Samudra, and Travis S. Humble. 2022. “Adaptive Stabilization of Quantum Circuits Executed on Unstable Devices.” 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), September. https://doi.org/10.1109/qce53715.2022.00102. | 2022 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Berg, Ewout van den, Sergey Bravyi, Jay M. Gambetta, Petar Jurcevic, Dmitri Maslov, and Kristan Temme. 2022. “Single-Shot Error Mitigation by Coherent Pauli Checks.” ArXiv. https://doi.org/10.48550/ARXIV.2212.03937. | 2022 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Zhang, Shengzhi, Sangyun Lee, Andrew J. Woods, William Peria, Sean M. Thomas, Roman Movshovich, Eric Brosha, et al. 2022. “Electronic and Magnetic Phase Diagrams of Kitaev Quantum Spin Liquid Candidate Na$_2$Co$_2$TeO$_6$.” arXiv. https://doi.org/10.48550/ARXIV.2212.03849. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Shimasaki, Toshihiko, Max Prichard, H. Esat Kondakci, Jared Pagett, Yifei Bai, Peter Dotti, Alec Cao, Tsung-Cheng Lu, Tarun Grover, and David M. Weld. 2022. “Anomalous Localization and Multifractality in a Kicked Quasicrystal.” arXiv. https://doi.org/10.48550/ARXIV.2203.09442. | 2022 | 1.2.2.03 Kitaev Chain Quantum Simulator |
Cerezo, M., Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, et al. 2021. “Variational Quantum Algorithms.” Nature Reviews Physics 3 (9): 625–44. https://doi.org/10.1038/s42254-021-00348-9. | 2021 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices, 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Cerezo, M., Guillaume Verdon, Hsin-Yuan Huang, Lukasz Cincio, and Patrick J. Coles. 2022. “Challenges and Opportunities in Quantum Machine Learning.” Nature Computational Science 2 (9): 567–76. https://doi.org/10.1038/s43588-022-00311-3. | 2022 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Caro, Matthias C., Hsin-Yuan Huang, M. Cerezo, Kunal Sharma, Andrew Sornborger, Lukasz Cincio, and Patrick J. Coles. 2022. “Generalization in Quantum Machine Learning from Few Training Data.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-32550-3. | 2022 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices, 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Ghosh, Sohitri, Matthew A. Feldman, Seongjin Hong, Claire Marvinney, Raphael Pooser, and Jacob M. Taylor. 2022. “Combining Quantum Noise Reduction Resources: a Practical Approach.” arXiv. https://doi.org/10.48550/ARXIV.2211.14460. | 2022 | 1.3.3.03 Squeezed Readout of Quantum Sensors |
Boltasseva, Alexandra, Vladimir M. Shalaev, and Blake Wilson. 2022. “Machine Learning for Photonics.” Edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. Active Photonic Platforms (APP) 2022, October. https://doi.org/10.1117/12.2633108. | 2022 | 1.2.2.07 MLAO: Machine Learning Assisted Optimization of Quantum Device Design |
Boltasseva, Alexandra. 2022. “Advancing Photonic Design with Machine Learning.” Edited by Kevin F. MacDonald, Anatoly V. Zayats, and Isabelle Staude. Metamaterials XIII, May. https://doi.org/10.1117/12.2624334. | 2022 | 1.2.2.07 MLAO: Machine Learning Assisted Optimization of Quantum Device Design |
Peana, Samuel, Omer Yesilyurt, Vahagn Mkhitaryan, Alexander Senichev, Zachariah O. Martin, Alexei S. Lagutchev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2022. “Large Scale Deterministic Creation of Single Photon Emitters in Silicon Nitride Nanopillars.” Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_qels.2022.fs4b.5. | 2022 | 1.3.1.01 Hybrid Quantum Sensors |
Kudyshev, Zhaxylyk A., Demid Sychev, Zachariah Martin, Simeon Bogdanov, Xiaohui Xu, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2021. “Machine Learning Assisted Quantum Super-Resolution Microscopy.” Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_at.2021.jth4c.5. | 2021 | 1.2.2.07 MLAO: Machine Learning Assisted Optimization of Quantum Device Design |
Xu, Xiaohui, Abhishek. B. Solanki, Demid Sychev, Xingyu Gao, Zachariah O. Martin, Alexander S. Baburin, Yong P. Chen, et al. 2022. “Plasmon-Enhanced Quantum Emission from Spin Defects in Two-Dimensional Hexagonal Boron Nitride.” Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_qels.2022.ff3c.3. | 2022 | 1.3.1.01 Hybrid Quantum Sensors |
Senichev, Alexander, Samuel Peana, Zachariah O. Martin, Omer Yesilyurt, Demid Sychev, Alexei S. Lagutchev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2022. “Monolithic Integration of Quantum Emitters with Silicon Nitride Photonic Platform.” Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_qels.2022.fw5f.6. | 2022 | 1.3.1.01 Hybrid Quantum Sensors |
Holmes, Zoe, Gopikrishnan Muraleedharan, Rolando D. Somma, Yigit Subasi, and Burak Şahinoğlu. 2022. “Quantum Algorithms from Fluctuation Theorems: Thermal-State Preparation.” Quantum 6 (October): 825. https://doi.org/10.22331/q-2022-10-06-825. | 2022 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Gu, Shouzhen, Rolando D. Somma, and Burak Şahinoğlu. 2021. “Fast-Forwarding Quantum Evolution.” Quantum 5 (November): 577. https://doi.org/10.22331/q-2021-11-15-577. | 2021 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Volkoff, T. J., and Yiğit Subaşı. 2022. “Ancilla-Free Continuous-Variable SWAP Test.” Quantum 6 (September): 800. https://doi.org/10.22331/q-2022-09-08-800. | 2022 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure, 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Kang, Christopher, Nicholas P. Bauman, Sriram Krishnamoorthy, and Karol Kowalski. 2022. “Optimized Quantum Phase Estimation for Simulating Electronic States in Various Energy Regimes.” Journal of Chemical Theory and Computation 18 (11): 6567–76. https://doi.org/10.1021/acs.jctc.2c00577. | 2022 | 1.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum |
Weiland, A., F. B. Santos, J. D. Thompson, E. D. Bauer, S. M. Thomas, and P. F. S. Rosa. 2022. “Differences in the Resistive and Thermodynamic Properties of the Single Crystalline Chiral Superconductor Candidate SrPtAs.” arXiv. https://doi.org/10.48550/ARXIV.2210.12189. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Konakanchi, Shiva T., Jukka I. Väyrynen, Yong P. Chen, Pramey Upadhyaya, and Leonid P. Rokhinson. 2022. “A Platform for Braiding Majorana Modes with Magnetic Skyrmions.” arXiv. https://doi.org/10.48550/ARXIV.2210.10650. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Curtis, Jonathan B., Ankit Disa, Michael Fechner, Andrea Cavalleri, and Prineha Narang. 2022. “Dynamics of Photo-Induced Ferromagnetism in Oxides with Orbital Degeneracy.” ArXiv. https://doi.org/10.48550/ARXIV.2209.10567. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Bieniek, Maciej, Jukka I. Väyrynen, Gang Li, Titus Neupert, and Ronny Thomale. 2022. “Theory of Glide Symmetry Protected Helical Edge States in WTe$_{2}$ Monolayer.” ArXiv. https://doi.org/10.48550/ARXIV.2209.09169. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Scheie, A. O., Y. Kamiya, Hao Zhang, Sangyun Lee, A. J. Woods, A. M. Omanakuttan, M. G. Gonzalez, et al. 2022. “Non-Linear Magnons and Exchange Hamiltonians of Delafossite Proximate Quantum Spin Liquids.” arXiv. https://doi.org/10.48550/ARXIV.2207.14785. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Slagle, Kevin, and John Preskill. 2022. “Emergent Quantum Mechanics at the Boundary of a Local Classical Lattice Model.” ArXiv. https://doi.org/10.48550/ARXIV.2207.09465. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Klein, Julian, Zhigang Song, Benjamin Pingault, Florian Dirnberger, Hang Chi, Jonathan B. Curtis, Rami Dana, et al. 2022. “Sensing the Local Magnetic Environment through Optically Active Defects in a Layered Magnetic Semiconductor.” ArXiv. https://doi.org/10.48550/ARXIV.2207.02884. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Cohen, Liam A., Noah L. Samuelson, Taige Wang, Kai Klocke, Cian C. Reeves, Takashi Taniguchi, Kenji Watanabe, Sagar Vijay, Michael P. Zaletel, and Andrea F. Young. 2022. “Nanoscale Electrostatic Control in Ultra Clean Van Der Waals Heterostructures by Local Anodic Oxidation of Graphite Gates.” arXiv. https://doi.org/10.48550/ARXIV.2204.10296. | 2022 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Cheng, Guanghui, Mohammad Mushfiqur Rahman, Andres Llacsahuanga Allcca, Avinash Rustagi, Xingtao Liu, Lina Liu, Lei Fu, et al. 2022. “Electrically Tunable Moiré Magnetism in Twisted Double Bilayer Antiferromagnets.” ArXiv. https://doi.org/10.48550/ARXIV.2204.03837. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Cheng, Guanghui, Mohammad Mushfiqur Rahman, Zhiping He, Andres Llacsahuanga Allcca, Avinash Rustagi, Kirstine Aggerbeck Stampe, Yanglin Zhu, et al. 2022. “Emergence of Electric-Field-Tunable Interfacial Ferromagnetism in 2D Antiferromagnet Heterostructures.” ArXiv. https://doi.org/10.48550/ARXIV.2203.13051. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Dolgirev, Pavel E., Marios H. Michael, Jonathan B. Curtis, Daniele Nicoletti, Michele Buzzi, Michael Fechner, Andrea Cavalleri, and Eugene Demler. 2021. “Theory for Anomalous Terahertz Emission in Striped Cuprate Superconductors.” ArXiv. https://doi.org/10.48550/ARXIV.2112.05772. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Nicoletti, D., M. Buzzi, M. Fechner, P. E. Dolgirev, M. H. Michael, J. B. Curtis, E. Demler, G. D. Gu, and A. Cavalleri. 2022. “Coherent Emission from Surface Josephson Plasmons in Striped Cuprates.” Proceedings of the National Academy of Sciences 119 (39). https://doi.org/10.1073/pnas.2211670119. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Nicoletti, D., M. Buzzi, M. Fechner, P. E. Dolgirev, M. H. Michael, J. B. Curtis, E. Demler, G. D. Gu, and A. Cavalleri. 2021. “Coherent Emission from Surface Josephson Plasmons in Striped Cuprates.” ArXiv. https://doi.org/10.48550/ARXIV.2111.14904. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Varnavides, Georgios, Yaxian Wang, Philip J. W. Moll, Polina Anikeeva, and Prineha Narang. 2021. “Finite-Size Effects of Electron Transport in PdCoO$_2$.” ArXiv. https://doi.org/10.48550/ARXIV.2106.00697. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development, 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Liu, Chunxiao, Gábor B. Halász, and Leon Balents. 2021. “$Mathrm{U(1)}$ and $Mathbb{Z}_2$ Spin Liquids on the Pyrochlore Lattice.” ArXiv. https://doi.org/10.48550/ARXIV.2105.12726. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Allcca, Andres E. Llacsahuanga, Xing-Chen Pan, Ireneusz Miotkowski, Katsumi Tanigaki, and Yong P. Chen. 2022. “Gate-Tunable Anomalous Hall Effect in Stacked Van Der Waals Ferromagnetic Insulator - Topological Insulator Heterostructures.” ArXiv. https://doi.org/10.48550/ARXIV.2206.13045. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Girod, Clément, Callum R. Stevens, Andrew Huxley, Eric D. Bauer, Frederico B. Santos, Joe D. Thompson, Rafael M. Fernandes, et al. 2022. “Thermodynamic and Electrical Transport Properties of UTe$_2$ under Uniaxial Stress.” ArXiv. https://doi.org/10.48550/ARXIV.2205.04588. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Klocke, Kai, and Michael Buchhold. 2022. “Topological Order and Entanglement Dynamics in the Measurement-Only XZZX Quantum Code.” ArXiv. https://doi.org/10.48550/ARXIV.2204.08489. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Wang, Yaxian, Georgios Varnavides, Polina Anikeeva, Johannes Gooth, Claudia Felser, and Prineha Narang. 2021. “Generalized Design Principles for Hydrodynamic Electron Transport in Anisotropic Metals.” ArXiv. https://doi.org/10.48550/ARXIV.2109.00550. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Bøttcher, C. G. L., S. P. Harvey, S. Fallahi, G. C. Gardner, M. J. Manfra, U. Vool, S. D. Bartlett, and A. Yacoby. 2021. “Parametric Longitudinal Coupling between a High-Impedance Superconducting Resonator and a Semiconductor Quantum Dot Singlet-Triplet Spin Qubit.” ArXiv. https://doi.org/10.48550/ARXIV.2107.10269. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Avers, K. E., P. A. Maksimov, P. F. S. Rosa, S. M. Thomas, J. D. Thompson, W. P. Halperin, R. Movshovich, and A. L. Chernyshev. 2021. “Fingerprinting Triangular-Lattice Antiferromagnet by Excitation Gaps.” ArXiv. https://doi.org/10.48550/ARXIV.2102.02818. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Mueller, Niklas, Joseph A. Carolan, Andrew Connelly, Zohreh Davoudi, Eugene F. Dumitrescu, and Kübra Yeter-Aydeniz. 2022. “Quantum Computation of Dynamical Quantum Phase Transitions and Entanglement Tomography in a Lattice Gauge Theory.” arXiv. https://doi.org/10.48550/ARXIV.2210.03089. | 2022 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Pandey, Tushar, and Eugene Dumitrescu. 2022. “Topological Characterization with a Twist, Condensation, and Reflection.” arXiv. https://doi.org/10.48550/ARXIV.2209.11126. | 2022 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Tian, Jifa, Cüneyt Şahin, Ireneusz Miotkowski, Michael E. Flatté, and Yong P. Chen. 2021. “Opposite Current-Induced Spin Polarizations in Bulk-Metallic Bi2Se3 and Bulk-Insulating Bi2Te2Se Topological Insulator Thin Flakes.” Physical Review B 103 (3). https://doi.org/10.1103/physrevb.103.035412. | 2021 | 1.1.1.02 Controlling and Interacting with Anyons |
Wu, Anbang, Yufei Ding, and Ang Li. 2022. “CollComm: Enabling Efficient Collective Quantum Communication Based on EPR Buffering.” arXiv. https://doi.org/10.48550/ARXIV.2208.06724. | 2022 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Fang, Bo, M. Yusuf Ozkaya, Ang Li, Umit V. Catalyurek, and Sriram Krishnamoorthy. 2022. “Efficient Hierarchical State Vector Simulation of Quantum Circuits via Acyclic Graph Partitioning.” 2022 IEEE International Conference on Cluster Computing (CLUSTER), September. https://doi.org/10.1109/cluster51413.2022.00041. | 2022 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Zheng, Muqing, Ang Li, Tamás Terlaky, and Xiu Yang. 2023. “A Bayesian Approach for Characterizing and Mitigating Gate and Measurement Errors.” ACM Transactions on Quantum Computing 4 (2): 1–21. https://doi.org/10.1145/3563397. | 2022 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Li, Guangjie, Elio J. König, and Jukka I. Väyrynen. 2022. “Topological Symplectic Kondo Effect.” ArXiv. https://doi.org/10.48550/ARXIV.2210.16614. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Dupont, Maxime, and Joel E. Moore. 2022. “Quantum Criticality Using a Superconducting Quantum Processor.” Physical Review B 106 (4). https://doi.org/10.1103/physrevb.106.l041109. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Shumiya, Nana, Md Shafayat Hossain, Jia-Xin Yin, Zhiwei Wang, Maksim Litskevich, Chiho Yoon, Yongkai Li, et al. 2022. “Evidence of a Room-Temperature Quantum Spin Hall Edge State in a Higher-Order Topological Insulator.” Nature Materials 21 (10): 1111–15. https://doi.org/10.1038/s41563-022-01304-3. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Shumiya, Nana, Jia-Xin Yin, Guoqing Chang, Meng Yang, Sougata Mardanya, Tay-Rong Chang, Hsin Lin, et al. 2022. “Evidence for Electronic Signature of a Magnetic Transition in the Topological Magnet HoSbTe.” Physical Review B 106 (3). https://doi.org/10.1103/physrevb.106.035151. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Xie, Yaofeng, Yongkai Li, Philippe Bourges, Alexandre Ivanov, Zijin Ye, Jia-Xin Yin, M. Zahid Hasan, et al. 2022. “Electron-Phonon Coupling in the Charge Density Wave State of CsV3Sb5.” Physical Review B 105 (14). https://doi.org/10.1103/physrevb.105.l140501. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Yin, Jia-Xin, Yu-Xiao Jiang, Xiaokun Teng, Md. Shafayat Hossain, Sougata Mardanya, Tay-Rong Chang, Zijin Ye, et al. 2022. “Discovery of Charge Order and Corresponding Edge State in Kagome Magnet FeGe.” Physical Review Letters 129 (16). https://doi.org/10.1103/physrevlett.129.166401. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Samarakoon, Anjana M., André Sokolowski, Bastian Klemke, Ralf Feyerherm, Michael Meissner, R. A. Borzi, Feng Ye, et al. 2022. “Structural Magnetic Glassiness in the Spin Ice Dy2Ti2O7.” Physical Review Research 4 (3). https://doi.org/10.1103/physrevresearch.4.033159. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Scheie, A., P. Laurell, B. Lake, S. E. Nagler, M. B. Stone, J-S Caux, and D. A. Tennant. 2022. “Quantum Wake Dynamics in Heisenberg Antiferromagnetic Chains.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-33571-8. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Laurell, Pontus, Allen Scheie, D. Alan Tennant, Satoshi Okamoto, Gonzalo Alvarez, and Elbio Dagotto. 2022. “Magnetic Excitations, Nonclassicality, and Quantum Wake Spin Dynamics in the Hubbard Chain.” Physical Review B 106 (8). https://doi.org/10.1103/physrevb.106.085110. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Zhang, Qiang, Yuanpeng Zhang, Masaaki Matsuda, Vasile Ovidiu Garlea, Jiaqiang Yan, Michael A. McGuire, D. Alan Tennant, and Satoshi Okamoto. 2022. “Hidden Local Symmetry Breaking in a Kagome-Lattice Magnetic Weyl Semimetal.” Journal of the American Chemical Society 144 (31): 14339–50. https://doi.org/10.1021/jacs.2c05665. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Wang, Qing Hua, Amilcar Bedoya-Pinto, Mark Blei, Avalon H. Dismukes, Assaf Hamo, Sarah Jenkins, Maciej Koperski, et al. 2022. “The Magnetic Genome of Two-Dimensional van Der Waals Materials.” ACS Nano 16 (5): 6960–7079. https://doi.org/10.1021/acsnano.1c09150. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Biswas, Somnath, Ioannis Petrides, Robert J. Kirby, Catrina Oberg, Sebastian Klemenz, Caroline Weinberg, Austin Ferrenti, Prineha Narang, Leslie M. Schoop, and Gregory D. Scholes. 2022. “Photoinduced Band Renormalization Effects in the Topological Nodal-Line Semimetal ZrSiS.” Physical Review B 106 (13). https://doi.org/10.1103/physrevb.106.134303. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Klein, J., T. Pham, J. D. Thomsen, J. B. Curtis, T. Denneulin, M. Lorke, M. Florian, et al. 2022. “Control of Structure and Spin Texture in the van Der Waals Layered Magnet CrSBr.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-32737-8. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Slagle, Kevin, Yue Liu, David Aasen, Hannes Pichler, Roger S. K. Mong, Xie Chen, Manuel Endres, and Jason Alicea. 2022. “Quantum Spin Liquids Bootstrapped from Ising Criticality in Rydberg Arrays.” Physical Review B 106 (11). https://doi.org/10.1103/physrevb.106.115122. | 2022 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Weiland, A, S M Thomas, and P F S Rosa. 2022. “Investigating the Limits of Superconductivity in UTe2.” Journal of Physics: Materials 5 (4): 044001. https://doi.org/10.1088/2515-7639/ac8ba9. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Sbierski, Björn, Max Geier, An-Ping Li, Matthew Brahlek, Robert G. Moore, and Joel E. Moore. 2022. “Identifying Majorana Vortex Modes via Nonlocal Transport.” Physical Review B 106 (3). https://doi.org/10.1103/physrevb.106.035413. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Bøttcher, C. G. L., S. P. Harvey, S. Fallahi, G. C. Gardner, M. J. Manfra, U. Vool, S. D. Bartlett, and A. Yacoby. 2022. “Parametric Longitudinal Coupling between a High-Impedance Superconducting Resonator and a Semiconductor Quantum Dot Singlet-Triplet Spin Qubit.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-32236-w. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
McGuire, Michael A., Yun-Yi Pai, Matthew Brahlek, Satoshi Okamoto, and R. G. Moore. 2022. “Electronic and Topological Properties of the van Der Waals Layered Superconductor PtTe.” Physical Review B 105 (18). https://doi.org/10.1103/physrevb.105.184514. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Liu, Yue, Kevin Slagle, Kenneth S. Burch, and Jason Alicea. 2022. “Dynamical Anyon Generation in Kitaev Honeycomb Non-Abelian Spin Liquids.” Physical Review Letters 129 (3). https://doi.org/10.1103/physrevlett.129.037201. | 2022 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Mishra, S., Y. Liu, E. D. Bauer, F. Ronning, and S. M. Thomas. 2022. “Anisotropic Magnetotransport Properties of the Heavy-Fermion Superconductor CeRh2As2.” Physical Review B 106 (14). https://doi.org/10.1103/physrevb.106.l140502. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Curtis, Jonathan B., Nicholas R. Poniatowski, Amir Yacoby, and Prineha Narang. 2022. “Proximity-Induced Collective Modes in an Unconventional Superconductor Heterostructure.” Physical Review B 106 (6). https://doi.org/10.1103/physrevb.106.064508. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Wang, Yaxian, Georgios Varnavides, Ravishankar Sundararaman, Polina Anikeeva, Johannes Gooth, Claudia Felser, and Prineha Narang. 2022. “Generalized Design Principles for Hydrodynamic Electron Transport in Anisotropic Metals.” Physical Review Materials 6 (8). https://doi.org/10.1103/physrevmaterials.6.083802. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Qiu, Ziwei, Assaf Hamo, Uri Vool, Tony X. Zhou, and Amir Yacoby. 2022. “Nanoscale Electric Field Imaging with an Ambient Scanning Quantum Sensor Microscope.” Npj Quantum Information 8 (1). https://doi.org/10.1038/s41534-022-00622-3. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Park, Sohee, Young-Kyun Kwon, Mina Yoon, and Changwon Park. 2022. “Role of Sr Doping and External Strain on Relieving Bottleneck of Oxygen Diffusion in La2−xSrxCuO4−δ.” Scientific Reports 12 (1). https://doi.org/10.1038/s41598-022-17376-9. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Llacsahuanga Allcca, Andres E., Xing-Chen Pan, Ireneusz Miotkowski, Katsumi Tanigaki, and Yong P. Chen. 2022. “Gate-Tunable Anomalous Hall Effect in Stacked van Der Waals Ferromagnetic Insulator–Topological Insulator Heterostructures.” Nano Letters 22 (20): 8130–36. https://doi.org/10.1021/acs.nanolett.2c02571. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Girod, Clément, Callum R. Stevens, Andrew Huxley, Eric D. Bauer, Frederico B. Santos, Joe D. Thompson, Rafael M. Fernandes, et al. 2022. “Thermodynamic and Electrical Transport Properties of UTe2 under Uniaxial Stress.” Physical Review B 106 (12). https://doi.org/10.1103/physrevb.106.l121101. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Klocke, Kai, and Michael Buchhold. 2022. “Topological Order and Entanglement Dynamics in the Measurement-Only XZZX Quantum Code.” Physical Review B 106 (10). https://doi.org/10.1103/physrevb.106.104307. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Lapano, Jason, Yun-Yi Pai, Alessandro R. Mazza, Jie Zhang, Tamara Isaacs-Smith, Patrick Gemperline, Lizhi Zhang, et al. 2021. “Self-Regulated Growth of Candidate Topological Superconducting Parkerite by Molecular Beam Epitaxy.” APL Materials 9 (10). https://doi.org/10.1063/5.0064746. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Moore, Robert G., Tyler Smith, Xiong Yao, Yun-Yi Pai, Michael Chilcote, Hu Miao, Satoshi Okamoto, Seongshik Oh, and Matthew Brahlek. 2022. “Monolayer Superconductivity and Tunable Topological Electronic Structure at the Fe(Te,Se)/Bi2Te3 Interface.” ArXiv. https://doi.org/10.48550/ARXIV.2209.06646. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Khalid, Bilal, Shree Hari Sureshbabu, Arnab Banerjee, and Sabre Kais. 2022. “Finite-Size Scaling on a Digital Quantum Simulator Using Quantum Restricted Boltzmann Machine.” Frontiers in Physics 10 (May). https://doi.org/10.3389/fphy.2022.915863. | 2022 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Mishra, Sanu, Yu Liu, Eric D. Bauer, Filip Ronning, and Sean. M. Thomas. 2022. “Anisotropic Magnetotransport Properties of the Heavy-Fermion Superconductor CeRh$_2$As$_2$.” ArXiv. https://doi.org/10.48550/ARXIV.2207.14773. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Dasgupta, Samudra, and Travis S. Humble. 2022. “Characterizing the Reproducibility of Noisy Quantum Circuits.” Entropy 24 (2): 244. https://doi.org/10.3390/e24020244. | 2022 | 1.6 QSC Management |
Li, Guangjie, Yuval Oreg, and Jukka I. Väyrynen. 2022. “Multichannel Topological Kondo Effect.” ArXiv. https://doi.org/10.48550/ARXIV.2207.10105. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Sajjan, Manas, Junxu Li, Raja Selvarajan, Shree Hari Sureshbabu, Sumit Suresh Kale, Rishabh Gupta, Vinit Singh, and Sabre Kais. 2022. “Quantum Machine Learning for Chemistry and Physics.” Chemical Society Reviews 51 (15): 6475–6573. https://doi.org/10.1039/d2cs00203e. | 2022 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Li, Shaozhi, and Satoshi Okamoto. 2022. “Thermal Hall Effect in the Kitaev-Heisenberg System with Spin-Phonon Coupling.” Physical Review B 106 (2). https://doi.org/10.1103/physrevb.106.024413. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Fang, Bo, M. Yusuf Özkaya, Ang Li, Ümit V. Çatalyürek, and Sriram Krishnamoorthy. 2022. “Efficient Hierarchical State Vector Simulation of Quantum Circuits via Acyclic Graph Partitioning.” arXiv. https://doi.org/10.48550/ARXIV.2205.06973. | 2022 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Li, Ang, Bo Fang, Christopher Granade, Guen Prawiroatmodjo, Bettina Heim, Martin Roetteler, and Sriram Krishnamoorthy. 2021. “SV-Sim.” Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, November. https://doi.org/10.1145/3458817.3476169. | 2021 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Jha, Akshat A., Eliana L. Stoyanoff, Guga Khundzakishvili, Paul Kairys, Hayato Ushijima-Mwesigwa, and Arnab Banerjee. 2021. “Digital Annealing Route to Complex Magnetic Phase Discovery.” 2021 International Conference on Rebooting Computing (ICRC), November. https://doi.org/10.1109/icrc53822.2021.00027. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Rajagopal Iyer, Vasudevan, Scott T. Retterer, Jason Fowlkes, Stephen Jesse, Alexander A. Puretzky, Jordan A. Hachtel, Philip D. Rack, and Benjamin J. Lawrie. 2021. “In Situ Electron-Beam Processing and Cathodoluminescence Microscopy for Quantum Nanophotonics.” Edited by Andrei V. Kabashin, Jan J. Dubowski, David B. Geohegan, and Maria Farsari. Synthesis and Photonics of Nanoscale Materials XVIII, March. https://doi.org/10.1117/12.2578528. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Lawrie, Benjamin J., Matthew Feldman, Claire E. Marvinney, and Yun-Yi Pai. 2021. “Free-Space Confocal Magneto-Optical Spectroscopies at MilliKelvin Temperatures.” Edited by Mario Agio, Cesare Soci, and Matthew T. Sheldon. Quantum Nanophotonic Materials, Devices, and Systems 2021, August. https://doi.org/10.1117/12.2595780. | 2021 | 1.3.1.01 Hybrid Quantum Sensors |
Slagle, Kevin. 2021. “Testing Quantum Mechanics Using Noisy Quantum Computers.” arXiv. https://doi.org/10.48550/ARXIV.2108.02201. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Slagle, Kevin. 2021. “Fast Tensor Disentangling Algorithm.” SciPost Physics 11 (3). https://doi.org/10.21468/scipostphys.11.3.056. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Zhang, Shang-Shun, Gábor B. Halász, and Cristian D. Batista. 2021. “Theory of the Kitaev Model in a [111] Magnetic Field.” ArXiv. https://doi.org/10.48550/ARXIV.2104.02892. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Wang, Samson, Piotr Czarnik, Andrew Arrasmith, M. Cerezo, Lukasz Cincio, and Patrick J. Coles. 2021. “Can Error Mitigation Improve Trainability of Noisy Variational Quantum Algorithms?” ArXiv. https://doi.org/10.48550/ARXIV.2109.01051. | 2021 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Thomson, Alex, Ina Sorensen, Stevan Nadj-Perge, and Jason Alicea. 2021. “Gate-Defined Wires in Twisted Bilayer Graphene: from Electrical Detection of Inter-Valley Coherence to Internally Engineered Majorana Modes.” ArXiv. https://doi.org/10.48550/ARXIV.2105.02891. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Slagle, Kevin, David Aasen, Hannes Pichler, Roger S. K. Mong, Paul Fendley, Xie Chen, Manuel Endres, and Jason Alicea. 2021. “Microscopic Characterization of Ising Conformal Field Theory in Rydberg Chains.” Physical Review B 104 (23). https://doi.org/10.1103/physrevb.104.235109. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Scheie, Allen, Pontus Laurell, Paul A. McClarty, Garrett E. Granroth, Matt B. Stone, Roderich Moessner, and Stephen E. Nagler. 2021. “Dirac Magnons, Nodal Lines, and Nodal Plane in Elemental Gadolinium.” ArXiv. https://doi.org/10.48550/ARXIV.2107.11372. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Scheie, A. O., E. A. Ghioldi, J. Xing, J. A. M. Paddison, N. E. Sherman, M. Dupont, L. D. Sanjeewa, et al. 2021. “Witnessing Quantum Criticality and Entanglement in the Triangular Antiferromagnet KYbSe$_2$.” ArXiv. https://doi.org/10.48550/ARXIV.2109.11527. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Samarakoon, Anjana M., Andre Sokolowski, Bastian Klemke, Ralf Feyerherm, Michael Meissner, R. A. Borzi, Feng Ye, et al. 2021. “Structural Magnetic Glassiness in Spin Ice Dy$_2$Ti$_2$O$_7$.” ArXiv. https://doi.org/10.48550/ARXIV.2107.12305. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Sajjan, Manas, Junxu Li, Raja Selvarajan, Shree Hari Sureshbabu, Sumit Suresh Kale, Rishabh Gupta, Vinit Singh, and Sabre Kais. 2021. “Quantum Machine Learning for Chemistry and Physics.” ArXiv. https://doi.org/10.48550/ARXIV.2111.00851. | 2021 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Rosa, P. F. S., A. Weiland, S. S. Fender, B. L. Scott, F. Ronning, J. D. Thompson, E. D. Bauer, and S. M. Thomas. 2021. “Single-Component Superconducting State in UTe2 at 2 K.” ArXiv. https://doi.org/10.48550/ARXIV.2110.06200. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Myerson-Jain, Nayan E., Stephen Yan, David Weld, and Cenke Xu. 2021. “Construction of Fractal Order and Phase Transition with Rydberg Atoms.” ArXiv. https://doi.org/10.48550/ARXIV.2108.07765. | 2021 | 1.2.2.03 Kitaev Chain Quantum Simulator |
Mu, Sai, Kiranmayi D. Dixit, Xiaoping Wang, Douglas L. Abernathy, Huibo Cao, Stephen E. Nagler, Jiaqiang Yan, et al. 2022. “Role of the Third Dimension in Searching for Majorana Fermions in α−RuCl3 via Phonons.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.013067. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Liu, Yue, Kevin Slagle, Kenneth S. Burch, and Jason Alicea. 2021. “Dynamical Anyon Generation in Kitaev Honeycomb Non-Abelian Spin Liquids.” ArXiv. https://doi.org/10.48550/ARXIV.2111.09325. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Klocke, Kai, Joel E. Moore, Jason Alicea, and Gábor B. Halász. 2021. “Thermal Anyon Interferometry in Phonon-Coupled Kitaev Spin Liquids.” ArXiv. https://doi.org/10.48550/ARXIV.2105.05869. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Caro, Matthias C., Hsin-Yuan Huang, M. Cerezo, Kunal Sharma, Andrew Sornborger, Lukasz Cincio, and Patrick J. Coles. 2021. “Generalization in Quantum Machine Learning from Few Training Data.” ArXiv. https://doi.org/10.48550/ARXIV.2111.05292. | 2021 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Bultrini, Daniel, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, M. Cerezo, Patrick J. Coles, and Lukasz Cincio. 2021. “Unifying and Benchmarking State-of-the-Art Quantum Error Mitigation Techniques.” ArXiv. https://doi.org/10.48550/ARXIV.2107.13470. | 2021 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Stefanazzi, Leandro, Ken Treptow, Neal Wilcer, Chris Stoughton, Salvatore Montella, Collin Bradford, Gustavo Cancelo, et al. 2021. “The QICK (Quantum Instrumentation Control Kit): Readout and Control for Qubits and Detectors.” ArXiv. https://doi.org/10.48550/ARXIV.2110.00557. | 2021 | 1.3.3.02 High Throughput Cryogenic Sensor Arrays |
Holmes, Zoe, Gopikrishnan Muraleedharan, Rolando D. Somma, Yigit Subasi, and Burak Şahinoğlu. 2022. “Quantum Algorithms from Fluctuation Theorems: Thermal-State Preparation.” ArXiv. https://doi.org/10.48550/ARXIV.2203.08882. | 2022 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Shimasaki, Toshihiko, Max Prichard, H. Esat Kondakci, Jared Pagett, Yifei Bai, Peter Dotti, Alec Cao, Tsung-Cheng Lu, Tarun Grover, and David M. Weld. 2022. “Anomalous Localization and Multifractality in a Kicked Quasicrystal.” arXiv. https://doi.org/10.48550/ARXIV.2203.09442. | 2022 | 1.2.2.03 Kitaev Chain Quantum Simulator |
Khalid, Bilal, Shree Hari Sureshbabu, Arnab Banerjee, and Sabre Kais. 2022. “Finite-Size Scaling on a Digital Quantum Simulator Using Quantum Restricted Boltzmann Machine.” arXiv. https://doi.org/10.48550/ARXIV.2202.00112. | 2022 | 1.2.1.04 NASL: Towards non‐abelian spin liquids characterization on quantum hard |
Martin, Joshua D., A. Roggero, Huaiyu Duan, J. Carlson, and V. Cirigliano. 2021. “Classical and Quantum Evolution in a Simple Coherent Neutrino Problem.” ArXiv. https://doi.org/10.48550/ARXIV.2112.12686. | 2021 | 1.2.2.05 Strong interactions and dynamics: from quarks to nuclei |
Poniatowski, Nicholas R., Jonathan B. Curtis, Charlotte G. L. Bøttcher, Victor M. Galitski, Amir Yacoby, Prineha Narang, and Eugene Demler. 2021. “Surface Cooper Pair Spin Waves in Triplet Superconductors.” ArXiv. https://doi.org/10.48550/ARXIV.2112.12146. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Curtis, Jonathan B., Nicholas R. Poniatowski, Amir Yacoby, and Prineha Narang. 2022. “Proximity-Induced Collective Modes in an Unconventional Superconductor Heterostructure.” ArXiv. https://doi.org/10.48550/ARXIV.2201.04635. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Czajka, Peter, Tong Gao, Max Hirschberger, Paula Lampen-Kelley, Arnab Banerjee, Nicholas Quirk, David G. Mandrus, Stephen E. Nagler, and N. P. Ong. 2022. “The Planar Thermal Hall Conductivity in the Kitaev Magnet α-RuCl3.” ArXiv. https://doi.org/10.48550/ARXIV.2201.07873. | 2022 | 1.2.1.04 NASL: Towards non‐abelian spin liquids characterization on quantum hard |
Li, Haoxiang, A. Said, J. Q. Yan, D. M. Mandrus, H. N. Lee, S. Okamoto, Gábor B. Halász, and H. Miao. 2021. “Divergence of Majorana-Phonon Scattering in Kitaev Quantum Spin Liquid.” arXiv. https://doi.org/10.48550/ARXIV.2112.02015. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Blanco, Carlos, Bahaa Elshimy, Rafael F. Lang, and Robert Orlando. 2021. “Models of Ultra-Heavy Dark Matter Visible to Macroscopic Mechanical Sensing Arrays.” ArXiv. https://doi.org/10.48550/ARXIV.2112.14784. | 2021 | 1.3.3.03 Squeezed Readout of Quantum Sensors |
Volkoff, T. J., and Yiğit Subaşı. 2022. “Ancilla-Free Continuous-Variable SWAP Test.” ArXiv. https://doi.org/10.48550/ARXIV.2202.09923. | 2022 | 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Lefrançois, É., G. Grissonnanche, J. Baglo, P. Lampen-Kelley, J. Yan, C. Balz, D. Mandrus, et al. 2021. “Evidence of a Phonon Hall Effect in the Kitaev Spin Liquid Candidate $α$-RuCl$_3$.” ArXiv. https://doi.org/10.48550/ARXIV.2111.05493. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Zhao, Huan, Michael T. Pettes, Yu Zheng, and Han Htoon. 2021. “Site-Controlled Telecom-Wavelength Single-Photon Emitters in Atomically-Thin MoTe2.” Nature Communications 12 (1). https://doi.org/10.1038/s41467-021-27033-w. | 2021 | 1.3.1.01 Hybrid Quantum Sensors |
Yesilyurt, Omer, Zhaxylyk A. Kudyshev, Alexandra Boltasseva, Vladimir M. Shalaev, and Alexander V. Kildishev. 2021. “Efficient Topology-Optimized Couplers for On-Chip Single-Photon Sources.” ACS Photonics 8 (10): 3061–68. https://doi.org/10.1021/acsphotonics.1c01070. | 2021 | 1.3.1.01 Hybrid Quantum Sensors |
Wang, Derek S., Michael Haas, and Prineha Narang. 2021. “Quantum Interfaces to the Nanoscale.” ACS Nano 15 (5): 7879–88. https://doi.org/10.1021/acsnano.1c01255. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Tian, Jifa, Luis A Jauregui, C D Wilen, Albert F Rigosi, David B Newell, R McDermott, and Yong P Chen. 2021. “A Josephson Junction with H-BN Tunnel Barrier: Observation of Low Critical Current Noise.” Journal of Physics: Condensed Matter 33 (49): 495301. https://doi.org/10.1088/1361-648x/ac268f. | 2021 | 1.2.2.04 QSTQM‐BEC: Quantum simulation of topological quantum materials and fiel |
Senichev, Alexander, Samuel Peana, Zachariah O. Martin, Demid Sychev, Xiaohui Xu, Zhaxylyk Kudyshev, Alexei S. Lagutchev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2021. “Room-Temperature Single-Photon Emitters in Silicon Nitride.” Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_qels.2021.fw4i.6. | 2021 | 1.3.1.01 Hybrid Quantum Sensors |
Selvarajan, Raja, Vivek Dixit, Xingshan Cui, Travis S. Humble, and Sabre Kais. 2021. “Prime Factorization Using Quantum Variational Imaginary Time Evolution.” Scientific Reports 11 (1). https://doi.org/10.1038/s41598-021-00339-x. | 2021 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Sajjan, Manas, Shree Hari Sureshbabu, and Sabre Kais. 2021. “Quantum Machine-Learning for Eigenstate Filtration in Two-Dimensional Materials.” Journal of the American Chemical Society 143 (44): 18426–45. https://doi.org/10.1021/jacs.1c06246. | 2021 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Mazza, Alessandro R., Xingyao Gao, Daniel J. Rossi, Brianna L. Musico, Tyler W. Valentine, Zachary Kennedy, Jie Zhang, et al. 2021. “Searching for Superconductivity in High Entropy Oxide Ruddlesden–Popper Cuprate Films.” Journal of Vacuum Science & Technology A 40 (1). https://doi.org/10.1116/6.0001441. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Multer, Daniel, Jia-Xin Yin, Songtian S. Zhang, Hao Zheng, Tay-Rong Chang, Guang Bian, Raman Sankar, and M. Zahid Hasan. 2021. “Robust Topological State against Magnetic Impurities Observed in the Superconductor PbTaSe2.” Physical Review B 104 (7). https://doi.org/10.1103/physrevb.104.075145. | 2021 | 1.1.1.02 Controlling and Interacting with Anyons |
Pai, Yun‐Yi, Claire E. Marvinney, Chengyun Hua, Raphael C. Pooser, and Benjamin J. Lawrie. 2021. “Magneto‐Optical Sensing Beyond the Shot Noise Limit.” Advanced Quantum Technologies 5 (1). https://doi.org/10.1002/qute.202100107. | 2021 | 1.3.3.03 Squeezed Readout of Quantum Sensors |
Kayyalha, Morteza, Leonid P. Rokhinson, and Yong P. Chen. 2021. “Electrical and Superconducting Transport in Topological Insulator Nanoribbons.” Frontiers of Nanoscience, 241–64. https://doi.org/10.1016/b978-0-12-822083-2.00004-6. | 2021 | 1.1.1.02 Controlling and Interacting with Anyons |
Gao, Xingyu, Boyang Jiang, Andres E. Llacsahuanga Allcca, Kunhong Shen, Mohammad A. Sadi, Abhishek B. Solanki, Peng Ju, et al. 2021. “High-Contrast Plasmonic-Enhanced Shallow Spin Defects in Hexagonal Boron Nitride for Quantum Sensing.” Nano Letters 21 (18): 7708–14. https://doi.org/10.1021/acs.nanolett.1c02495. | 2021 | 1.1.1.02 Controlling and Interacting with Anyons |
Varnavides, Georgios, Yaxian Wang, Philip J. W. Moll, Polina Anikeeva, and Prineha Narang. 2022. “Mesoscopic Finite-Size Effects of Unconventional Electron Transport in PdCoO2.” Physical Review Materials 6 (4). https://doi.org/10.1103/physrevmaterials.6.045002. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Wang, Yiping, Ioannis Petrides, Grant McNamara, Md Mofazzel Hosen, Shiming Lei, Yueh-Chun Wu, James L. Hart, et al. 2022. “Axial Higgs Mode Detected by Quantum Pathway Interference in RTe3.” Nature 606 (7916): 896–901. https://doi.org/10.1038/s41586-022-04746-6. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Lefrançois, É., G. Grissonnanche, J. Baglo, P. Lampen-Kelley, J.-Q. Yan, C. Balz, D. Mandrus, et al. 2022. “Evidence of a Phonon Hall Effect in the Kitaev Spin Liquid Candidate α−RuCl3.” Physical Review X 12 (2). https://doi.org/10.1103/physrevx.12.021025. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Belopolski, Ilya, Guoqing Chang, Tyler A. Cochran, Zi-Jia Cheng, Xian P. Yang, Cole Hugelmeyer, Kaustuv Manna, et al. 2022. “Observation of a Linked-Loop Quantum State in a Topological Magnet.” Nature 604 (7907): 647–52. https://doi.org/10.1038/s41586-022-04512-8. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Mazza, Alessandro R., Jason Lapano, Harry M. MeyerIII, Christopher T. Nelson, Tyler Smith, Yun‐Yi Pai, Kyle Noordhoek, et al. 2022. “Surface‐Driven Evolution of the Anomalous Hall Effect in Magnetic Topological Insulator MnBi2Te4 Thin Films.” Advanced Functional Materials 32 (28). https://doi.org/10.1002/adfm.202202234. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Park, Changwon, and Mina Yoon. 2022. “Topography Inversion in Scanning Tunneling Microscopy of Single-Atom-Thick Materials from Penetrating Substrate States.” Scientific Reports 12 (1). https://doi.org/10.1038/s41598-022-10870-0. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Curtis, Jonathan B., Ioannis Petrides, and Prineha Narang. 2022. “Finite-Momentum Instability of Dynamical Axion Insulator.” ArXiv. https://doi.org/10.48550/ARXIV.2206.04711. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Biswas, Somnath, Ioannis Petrides, Robert J. Kirby, Catrina Oberg, Sebastian Klemenz, Caroline Weinberg, Austin Ferrenti, Prineha Narang, Leslie Schoop, and Gregory D. Scholes. 2022. “Photoinduced Band Renormalization Effects in ZrSiS Topological Nodal-Line Semimetal.” arXiv. https://doi.org/10.48550/ARXIV.2206.04654. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Welakuh, Davis M., and Prineha Narang. 2021. “Transition from Lorentz to Fano Spectral Line Shapes in Non-Relativistic Quantum Electrodynamics.” arXiv. https://doi.org/10.48550/ARXIV.2112.05114. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Welakuh, Davis M., and Prineha Narang. 2022. “Nonlinear Optical Processes in Centrosymmetric Systems by Strong-Coupling-Induced Symmetry Breaking.” arXiv. https://doi.org/10.48550/ARXIV.2202.11117. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Welakuh, Davis M., and Prineha Narang. 2022. “Tunable Nonlinearity and Efficient Harmonic Generation from a Strongly Coupled Light-Matter System.” arXiv. https://doi.org/10.48550/ARXIV.2203.00691. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Idzuchi, H., M. Kimata, S. Okamoto, P. Laurell, N. Mohanta, M. Cothrine, S. E. Nagler, D. Mandrus, A. Banerjee, and Y. P. Chen. 2022. “Spin Sensitive Transport in a Spin Liquid Material: Revealing a Robustness of Spin Anisotropy.” arXiv. https://doi.org/10.48550/ARXIV.2204.03158. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons, 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Laurell, Pontus, Allen Scheie, D. Alan Tennant, Satoshi Okamoto, Gonzalo Alvarez, and Elbio Dagotto. 2022. “Magnetic Excitations, Non-Classicality and Quantum Wake Spin Dynamics in the Hubbard Chain.” ArXiv. https://doi.org/10.48550/ARXIV.2203.06332. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Chirolli, Luca, Norman Y. Yao, and Joel E. Moore. 2022. “SWAP Gate between a Majorana Qubit and a Parity-Protected Superconducting Qubit.” ArXiv. https://doi.org/10.48550/ARXIV.2205.01410. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Papaj, Michał, and Joel E. Moore. 2022. “Current-Enabled Optical Conductivity of Superconductors.” ArXiv. https://doi.org/10.48550/ARXIV.2203.15801. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Guo, Yucheng, Mason Klemm, Ji Seop Oh, Yaofeng Xie, Bing-Hua Lei, Sergey Gorovikov, Tor Pedersen, et al. 2022. “Spectral Evidence for Unidirectional Charge Density Wave in Detwinned BaNi$_2$As$_2$.” arXiv. https://doi.org/10.48550/ARXIV.2205.14339. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Wang, Yiping, Ioannis Petrides, Grant McNamara, Md Mofazzel Hosen, Shiming Lei, Yueh-Chun Wu, James L. Hart, et al. 2021. “Axial Higgs Mode Detected by Quantum Pathway Interference in RTe3.” ArXiv. https://doi.org/10.48550/ARXIV.2112.02454. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Zhang, Qiang, Yuanpeng Zhang, Masaaki Matsuda, Vasile O Garlea, Jiaqiang Yan, Michael A. McGuire, D. Alan Tennant, and Satoshi Okamoto. 2022. “Hidden Local Symmetry Breaking in a Kagome-Lattice Magnetic Weyl Semimetal.” ArXiv. https://doi.org/10.48550/ARXIV.2202.08428. | 2022 | 1.1.1 Topological Electronic Materials, 1.1.1.01 Topological materials prediction, synthesis, materials development |
Scheie, Allen, Pontus Laurell, Bella Lake, Stephen E. Nagler, Matthew B. Stone, Jean-Sebastian Caux, and D. Alan Tennant. 2022. “Quantum Wake Dynamics in Heisenberg Antiferromagnetic Chains.” ArXiv. https://doi.org/10.48550/ARXIV.2201.03536. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Samarakoon, Anjana M., Pontus Laurell, Christian Balz, Arnab Banerjee, Paula Lampen-Kelley, David Mandrus, Stephen E. Nagler, Satoshi Okamoto, and D. Alan Tennant. 2022. “Extraction of the Interaction Parameters for $α-$RuCl$_3$ from Neutron Data Using Machine Learning.” ArXiv. https://doi.org/10.48550/ARXIV.2202.10715. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Slagle, Kevin, Yue Liu, David Aasen, Hannes Pichler, Roger S. K. Mong, Xie Chen, Manuel Endres, and Jason Alicea. 2022. “Quantum Spin Liquids Bootstrapped from Ising Criticality in Rydberg Arrays.” ArXiv. https://doi.org/10.48550/ARXIV.2204.00013. | 2022 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
McGuire, Michael A., Yun-Yi Pai, Matthew Brahlek, Satoshi Okamoto, and R. G. Moore. 2022. “Electronic and Topological Properties of the Van Der Waals Layered Superconductor PtTe.” ArXiv. https://doi.org/10.48550/ARXIV.2203.06655. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Samarakoon, A. M., D. Alan Tennant, Feng Ye, Qiang Zhang, and S. A. Grigera. 2021. “Integration of Machine Learning with Neutron Scattering: Hamiltonian Tuning in Spin Ice with Pressure.” arXiv. https://doi.org/10.48550/ARXIV.2110.15817. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
McGuire, Michael A., Qiang Zhang, Hu Miao, Wei Luo, Mina Yoon, Yaohua Liu, Turgut Yilmaz, and Elio Vescovo. 2021. “Antiferromagnetic Order and Linear Magnetoresistance in Fe-Substituted Shandite Co3In2S2.” Chemistry of Materials 33 (24): 9741–49. https://doi.org/10.1021/acs.chemmater.1c03596. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Slagle, Kevin, David Aasen, Hannes Pichler, Roger S. K. Mong, Paul Fendley, Xie Chen, Manuel Endres, and Jason Alicea. 2021. “Microscopic Characterization of Ising Conformal Field Theory in Rydberg Chains.” ArXiv. https://doi.org/10.48550/ARXIV.2108.09309. | 2021 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Dupont, Maxime, and Joel E. Moore. 2021. “Quantum Criticality Using a Superconducting Quantum Processor.” ArXiv. https://doi.org/10.48550/ARXIV.2109.10909. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Sbierski, Björn, Max Geier, An-Ping Li, Matthew Brahlek, Robert G. Moore, and Joel E. Moore. 2021. “Identifying Majorana Vortex Modes via Non-Local Transport.” ArXiv. https://doi.org/10.48550/ARXIV.2107.11226. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Beckey, Jacob L., N. Gigena, Patrick J. Coles, and M. Cerezo. 2021. “Computable and Operationally Meaningful Multipartite Entanglement Measures.” Physical Review Letters 127 (14). https://doi.org/10.1103/physrevlett.127.140501. | 2021 | 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Hall, Benjamin, Alessandro Roggero, Alessandro Baroni, and Joseph Carlson. 2021. “Simulation of Collective Neutrino Oscillations on a Quantum Computer.” Physical Review D 104 (6). https://doi.org/10.1103/physrevd.104.063009. | 2021 | 1.2.2.05 Strong interactions and dynamics: from quarks to nuclei |
Lowe, Angus, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio. 2021. “Unified Approach to Data-Driven Quantum Error Mitigation.” Physical Review Research 3 (3). https://doi.org/10.1103/physrevresearch.3.033098. | 2021 | 1.2.1.02 EMQD: Error mitigation on near‐term quantum devices |
Li, Chuan-Hsun, Yangqian Yan, Shih-Wen Feng, Sayan Choudhury, David B. Blasing, Qi Zhou, and Yong P. Chen. 2022. “Bose-Einstein Condensate on a Synthetic Topological Hall Cylinder.” PRX Quantum 3 (1). https://doi.org/10.1103/prxquantum.3.010316. | 2022 | 1.3.3.03 Squeezed Readout of Quantum Sensors |
Volkoff, T. J., and Michael J. Martin. 2022. “Asymptotic Optimality of Twist-Untwist Protocols for Heisenberg Scaling in Atom-Based Sensing.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.013236. | 2022 | 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Samarakoon, Anjana M., S. A. Grigera, D. Alan Tennant, Alexander Kirste, Bastian Klemke, Peter Strehlow, Michael Meissner, et al. 2022. “Anomalous Magnetic Noise in an Imperfectly Flat Landscape in the Topological Magnet Dy 2 Ti 2 O 7.” Proceedings of the National Academy of Sciences 119 (5). https://doi.org/10.1073/pnas.2117453119. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Beckey, Jacob L., M. Cerezo, Akira Sone, and Patrick J. Coles. 2022. “Variational Quantum Algorithm for Estimating the Quantum Fisher Information.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.013083. | 2022 | 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Mazza, Alessandro R., Xingyao Gao, Daniel J. Rossi, Brianna L. Musico, Tyler W. Valentine, Zachary Kennedy, Jie Zhang, et al. 2021. “Searching for Superconductivity in High Entropy Oxide Ruddlesden–Popper Cuprate Films.” Journal of Vacuum Science & Technology A 40 (1). https://doi.org/10.1116/6.0001441. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Samarakoon, Anjana M, and D Alan Tennant. 2021. “Machine Learning for Magnetic Phase Diagrams and Inverse Scattering Problems.” Journal of Physics: Condensed Matter 34 (4): 044002. https://doi.org/10.1088/1361-648x/abe818. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Neupert, Titus, M. Michael Denner, Jia-Xin Yin, Ronny Thomale, and M. Zahid Hasan. 2021. “Charge Order and Superconductivity in Kagome Materials.” Nature Physics 18 (2): 137–43. https://doi.org/10.1038/s41567-021-01404-y. | 2021 | 1.1.1.02 Controlling and Interacting with Anyons |
Xu, Yang, and Yong P. Chen. 2021. “Quantum Transport Study in Three-Dimensional Topological Insulator BiSbTeSe2.” Topological Insulator and Related Topics, 73–124. https://doi.org/10.1016/bs.semsem.2021.07.002. | 2021 | 1.2.2.04 QSTQM‐BEC: Quantum simulation of topological quantum materials and fiel |
Laurell, Pontus, Allen Scheie, Chiron J. Mukherjee, Michael M. Koza, Mechtild Enderle, Zbigniew Tylczynski, Satoshi Okamoto, Radu Coldea, D. Alan Tennant, and Gonzalo Alvarez. 2021. “Quantifying and Controlling Entanglement in the Quantum Magnet Cs2CoCl4.” Physical Review Letters 127 (3). https://doi.org/10.1103/physrevlett.127.037201. | 2021 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Wilson, Blake A., Zhaxylyk A. Kudyshev, Alexander V. Kildishev, Sabre Kais, Vladimir M. Shalaev, and Alexandra Boltasseva. 2021. “Machine Learning Framework for Quantum Sampling of Highly Constrained, Continuous Optimization Problems.” Applied Physics Reviews 8 (4). https://doi.org/10.1063/5.0060481. | 2021 | 1.2.2.07 MLAO: Machine Learning Assisted Optimization of Quantum Device Design |
Şahinoğlu, Burak, and Rolando D. Somma. 2021. “Hamiltonian Simulation in the Low-Energy Subspace.” Npj Quantum Information 7 (1). https://doi.org/10.1038/s41534-021-00451-w. | 2021 | 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure |
Sone, Akira, M. Cerezo, Jacob L. Beckey, and Patrick J. Coles. 2021. “Generalized Measure of Quantum Fisher Information.” Physical Review A 104 (6). https://doi.org/10.1103/physreva.104.062602. | 2021 | 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and |
Rimal, Gaurab, Caleb Schmidt, Hussein Hijazi, Leonard C. Feldman, Yiting Liu, Elizabeth Skoropata, Jason Lapano, et al. 2021. “Effective Reduction of PdCoO2 Thin Films via Hydrogenation and Sign Tunable Anomalous Hall Effect.” Physical Review Materials 5 (5). https://doi.org/10.1103/physrevmaterials.5.l052001. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Kais, Sabre, Travis Humble, Karol Kowalski, Ivano Tavernelli, Philip Walther, and Jiangfeng Du. 2021. “Editorial: Quantum Information and Quantum Computing for Chemical Systems.” Frontiers in Physics 9 (September). https://doi.org/10.3389/fphy.2021.753618. | 2021 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Myerson-Jain, Nayan E., Stephen Yan, David Weld, and Cenke Xu. 2022. “Construction of Fractal Order and Phase Transition with Rydberg Atoms.” Physical Review Letters 128 (1). https://doi.org/10.1103/physrevlett.128.017601. | 2022 | 1.2.2.03 Kitaev Chain Quantum Simulator |
Curtis, Jonathan B., Andrey Grankin, Nicholas R. Poniatowski, Victor M. Galitski, Prineha Narang, and Eugene Demler. 2022. “Cavity Magnon-Polaritons in Cuprate Parent Compounds.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.013101. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Solanki, Abhishek B., Simeon I. Bogdanov, Mohammad M. Rahman, Avinash Rustagi, Neil R. Dilley, Tingting Shen, Wenqi Tong, et al. 2022. “Electric Field Control of Interaction between Magnons and Quantum Spin Defects.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.l012025. | 2022 | 1.3.1.01 Hybrid Quantum Sensors |
Senichev, Alexander, Zachariah O. Martin, Samuel Peana, Demid Sychev, Xiaohui Xu, Alexei S. Lagutchev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2021. “Room-Temperature Single-Photon Emitters in Silicon Nitride.” Science Advances 7 (50). https://doi.org/10.1126/sciadv.abj0627. | 2021 | 1.3.1.01 Hybrid Quantum Sensors |
Zhang, Qiang, Satoshi Okamoto, German D. Samolyuk, Matthew B. Stone, Alexander I. Kolesnikov, Rui Xue, Jiaqiang Yan, Michael A. McGuire, David Mandrus, and D. Alan Tennant. 2021. “Unusual Exchange Couplings and Intermediate Temperature Weyl State in Co3Sn2S2.” Physical Review Letters 127 (11). https://doi.org/10.1103/physrevlett.127.117201. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Wang, Derek S., Christopher J. Ciccarino, Johannes Flick, and Prineha Narang. 2021. “Hybridized Defects in Solid-State Materials as Artificial Molecules.” ACS Nano 15 (3): 5240–48. https://doi.org/10.1021/acsnano.0c10601. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Philbin, John P., and Prineha Narang. 2021. “Computational Materials Insights Into Solid-State Multiqubit Systems.” PRX Quantum 2 (3). https://doi.org/10.1103/prxquantum.2.030102. | 2021 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Lapano, Jason, Ondrej Dyck, Andrew R. Lupini, Wonhee Ko, Haoxiang Li, Hu Miao, Ho Nyung Lee, et al. 2021. “Van Der Waals Epitaxy Growth of Bi2Se3 on a Freestanding Monolayer Graphene Membrane: Implications for Layered Materials and Heterostructures.” ACS Applied Nano Materials 4 (8): 7607–13. https://doi.org/10.1021/acsanm.1c01170. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Hasan, M. Zahid, Guoqing Chang, Ilya Belopolski, Guang Bian, Su-Yang Xu, and Jia-Xin Yin. 2021. “Weyl, Dirac and High-Fold Chiral Fermions in Topological Quantum Matter.” Nature Reviews Materials 6 (9): 784–803. https://doi.org/10.1038/s41578-021-00301-3. | 2021 | 1.1.1.02 Controlling and Interacting with Anyons |
Yang, Shuyang, Niels B. M. Schröter, Vladimir N. Strocov, Sergej Schuwalow, Mohana Rajpalk, Keita Ohtani, Peter Krogstrup, et al. 2022. “Electronic Structure of InAs and InSb Surfaces: Density Functional Theory and Angle‐Resolved Photoemission Spectroscopy.” Advanced Quantum Technologies 5 (3). https://doi.org/10.1002/qute.202100033. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Zhang, Shang-Shun, Gábor B. Halász, and Cristian D. Batista. 2022. “Theory of the Kitaev Model in a [111] Magnetic Field.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-28014-3. | 2022 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Kong, Xiangru, Wei Luo, Linyang Li, Mina Yoon, Tom Berlijn, and Liangbo Liang. 2022. “Floquet Band Engineering and Topological Phase Transitions in 1T’ Transition Metal Dichalcogenides.” 2D Materials 9 (2): 025005. https://doi.org/10.1088/2053-1583/ac4957. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Lüpke, Felix, Anh D. Pham, Yi-Fan Zhao, Ling-Jie Zhou, Wenchang Lu, Emil Briggs, Jerzy Bernholc, et al. 2022. “Local Manifestations of Thickness-Dependent Topology and Edge States in the Topological Magnet MnBi2Te4.” Physical Review B 105 (3). https://doi.org/10.1103/physrevb.105.035423. | 2022 | 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol |
Scheie, A., Pontus Laurell, P. A. McClarty, G. E. Granroth, M. B. Stone, R. Moessner, and S. E. Nagler. 2022. “Spin-Exchange Hamiltonian and Topological Degeneracies in Elemental Gadolinium.” Physical Review B 105 (10). https://doi.org/10.1103/physrevb.105.104402. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Scheie, A., Pontus Laurell, P. A. McClarty, G. E. Granroth, M. B. Stone, R. Moessner, and S. E. Nagler. 2022. “Dirac Magnons, Nodal Lines, and Nodal Plane in Elemental Gadolinium.” Physical Review Letters 128 (9). https://doi.org/10.1103/physrevlett.128.097201. | 2022 | 1.1.2.02 QSLM: Quantum Spin Liquid Materials |
Poniatowski, Nicholas R., Jonathan B. Curtis, Amir Yacoby, and Prineha Narang. 2022. “Spectroscopic Signatures of Time-Reversal Symmetry Breaking Superconductivity.” Communications Physics 5 (1). https://doi.org/10.1038/s42005-022-00819-0. | 2022 | 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits |
Ness, Hervé, Ivan A. Sadovskyy, Andrey E. Antipov, Mark van Schilfgaarde, and Roman M. Lutchyn. 2022. “Supercurrent Decay in Ballistic Magnetic Josephson Junctions.” Npj Computational Materials 8 (1). https://doi.org/10.1038/s41524-021-00694-3. | 2022 | 1.1.1.02 Controlling and Interacting with Anyons |
Thomson, Alex, Ina M. Sorensen, Stevan Nadj-Perge, and Jason Alicea. 2022. “Gate-Defined Wires in Twisted Bilayer Graphene: From Electrical Detection of Intervalley Coherence to Internally Engineered Majorana Modes.” Physical Review B 105 (8). https://doi.org/10.1103/physrevb.105.l081405. | 2022 | 1.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids |
Klocke, Kai, Joel E. Moore, Jason Alicea, and Gábor B. Halász. 2022. “Thermal Probes of Phonon-Coupled Kitaev Spin Liquids: From Accurate Extraction of Quantized Edge Transport to Anyon Interferometry.” Physical Review X 12 (1). https://doi.org/10.1103/physrevx.12.011034. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Pai, Yun-Yi, Claire E. Marvinney, Matthew A. Feldman, Brian Lerner, Yoong Sheng Phang, Kai Xiao, Jiaqiang Yan, et al. 2021. “Magnetostriction of α-RuCl3 Flakes in the Zigzag Phase.” The Journal of Physical Chemistry C 125 (46): 25687–94. https://doi.org/10.1021/acs.jpcc.1c07472. | 2021 | 1.3.1.01 Hybrid Quantum Sensors |
Abbamonte, Peter, Daniel Baxter, Yonatan Kahn, Gordan Krnjaic, Noah Kurinsky, Bashi Mandava, and Lucas K. Wagner. 2022. “Revisiting the Dark Matter Interpretation of Excess Rates in Semiconductors.” Physical Review D 105 (12). https://doi.org/10.1103/physrevd.105.123002. | 2022 | 1.3.3.01 Low Background Sensors and Materials |
Rosa, Priscila F. S., Ashley Weiland, Shannon S. Fender, Brian L. Scott, Filip Ronning, Joe D. Thompson, Eric D. Bauer, and Sean M. Thomas. 2022. “Single Thermodynamic Transition at 2 K in Superconducting UTe2 Single Crystals.” Communications Materials 3 (1). https://doi.org/10.1038/s43246-022-00254-2. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Adari, P., A. Aguilar-Arevalo, D. Amidei, G. Angloher, E. Armengaud, C. Augier, L. Balogh, et al. 2022. “EXCESS Workshop: Descriptions of Rising Low-Energy Spectra.” ArXiv. https://doi.org/10.48550/ARXIV.2202.05097. | 2022 | 1.3.3.01 Low Background Sensors and Materials |
Bac, S.-K., K. Koller, F. Lux, J. Wang, L. Riney, K. Borisiak, W. Powers, et al. 2022. “Topological Response of the Anomalous Hall Effect in MnBi2Te4 Due to Magnetic Canting.” Npj Quantum Materials 7 (1). https://doi.org/10.1038/s41535-022-00455-5. | 2022 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Claudino, Daniel, Bo Peng, Nicholas P Bauman, Karol Kowalski, and Travis S Humble. 2021. “Improving the Accuracy and Efficiency of Quantum Connected Moments Expansions*.” Quantum Science and Technology 6 (3): 034012. https://doi.org/10.1088/2058-9565/ac0292. | 2021 | 1.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum |
Bauman, Nicholas P., and Karol Kowalski. 2022. “Coupled Cluster Downfolding Methods: The Effect of Double Commutator Terms on the Accuracy of Ground-State Energies.” The Journal of Chemical Physics 156 (9). https://doi.org/10.1063/5.0076260. | 2022 | 1.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum |
Kowalski, Karol. 2021. “Dimensionality Reduction of the Many-Body Problem Using Coupled-Cluster Subsystem Flow Equations: Classical and Quantum Computing Perspective.” Physical Review A 104 (3). https://doi.org/10.1103/physreva.104.032804. | 2021 | 1.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum |
Bylaska, Eric J., Duo Song, Nicholas P. Bauman, Karol Kowalski, Daniel Claudino, and Travis S. Humble. 2021. “Quantum Solvers for Plane-Wave Hamiltonians: Abridging Virtual Spaces Through the Optimization of Pairwise Correlations.” Frontiers in Chemistry 9 (March). https://doi.org/10.3389/fchem.2021.603019. | 2021 | 1.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum |
Bauman, Nicholas P., and Karol Kowalski. 2022. “Coupled Cluster Downfolding Theory: Towards Universal Many-Body Algorithms for Dimensionality Reduction of Composite Quantum Systems in Chemistry and Materials Science.” Materials Theory 6 (1). https://doi.org/10.1186/s41313-022-00046-8. | 2022 | 1.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum |
Selvarajan, Raja, Manas Sajjan, and Sabre Kais. 2022. “Variational Quantum Circuits to Prepare Low Energy Symmetry States.” Symmetry 14 (3): 457. https://doi.org/10.3390/sym14030457. | 2022 | 1.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m |
Carbone, Alessandro, Davide Emilio Galli, Mario Motta, and Barbara Jones. 2022. “Quantum Circuits for the Preparation of Spin Eigenfunctions on Quantum Computers.” Symmetry 14 (3): 624. https://doi.org/10.3390/sym14030624. | 2022 | 1.2.1.04 NASL: Towards non‐abelian spin liquids characterization on quantum hard |
Copenhaver, Justin, and Jukka I. Väyrynen. 2022. “Edge Spin Transport in the Disordered Two-Dimensional Topological Insulator WTe2.” Physical Review B 105 (11). https://doi.org/10.1103/physrevb.105.115402. | 2022 | 1.1.1 Topological Electronic Materials |
Zhang, Jie, Yun-Yi Pai, Jason Lapano, Alessandro R. Mazza, Ho Nyung Lee, Rob G. Moore, Benjamin J. Lawrie, et al. 2021. “Design and Realization of Ohmic and Schottky Interfaces for Oxide Electronics.” Small Science 2 (2). https://doi.org/10.1002/smsc.202100087. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Miao, H., Y. L. Wang, J.-X. Yin, J. Zhang, S. Zhang, M. Z. Hasan, R. Yang, et al. 2021. “Hund’s Superconductor Li(Fe,Co)As.” Physical Review B 103 (5). https://doi.org/10.1103/physrevb.103.054503. | 2021 | 1.1.1.02 Controlling and Interacting with Anyons |
Thomas, S. M., C. Stevens, F. B. Santos, S. S. Fender, E. D. Bauer, F. Ronning, J. D. Thompson, A. Huxley, and P. F. S. Rosa. 2021. “Spatially Inhomogeneous Superconductivity in UTe2.” Physical Review B 104 (22). https://doi.org/10.1103/physrevb.104.224501. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Avers, K. E., P. A. Maksimov, P. F. S. Rosa, S. M. Thomas, J. D. Thompson, W. P. Halperin, R. Movshovich, and A. L. Chernyshev. 2021. “Fingerprinting Triangular-Lattice Antiferromagnet by Excitation Gaps.” Physical Review B 103 (18). https://doi.org/10.1103/physrevb.103.l180406. | 2021 | 1.1.1.02 Controlling and Interacting with Anyons |
Yao, Xiong, Matthew Brahlek, Hee Taek Yi, Deepti Jain, Alessandro R. Mazza, Myung-Geun Han, and Seongshik Oh. 2021. “Hybrid Symmetry Epitaxy of the Superconducting Fe(Te,Se) Film on a Topological Insulator.” Nano Letters 21 (15): 6518–24. https://doi.org/10.1021/acs.nanolett.1c01703. | 2021 | 1.1.1 Topological Electronic Materials |
Zhang, Shang-Shun, Gábor B. Halász, Wei Zhu, and Cristian D. Batista. 2021. “Variational Study of the Kitaev-Heisenberg-Gamma Model.” Physical Review B 104 (1). https://doi.org/10.1103/physrevb.104.014411. | 2021 | 1.1.2 Quantum Spin Systems |
Liu, Chunxiao, Gábor B. Halász, and Leon Balents. 2021. “Symmetric U(1) and Z2 Spin Liquids on the Pyrochlore Lattice.” Physical Review B 104 (5). https://doi.org/10.1103/physrevb.104.054401. | 2021 | 1.1.2 Quantum Spin Systems |
Scheie, A., Pontus Laurell, A. M. Samarakoon, B. Lake, S. E. Nagler, G. E. Granroth, S. Okamoto, G. Alvarez, and D. A. Tennant. 2021. “Witnessing Entanglement in Quantum Magnets Using Neutron Scattering.” Physical Review B 103 (22). https://doi.org/10.1103/physrevb.103.224434. | 2021 | 1.1.2 Quantum Spin Systems |
Chirolli, Luca, and Joel E. Moore. 2021. “Enhanced Coherence in Superconducting Circuits via Band Engineering.” Physical Review Letters 126 (18). https://doi.org/10.1103/physrevlett.126.187701. | 2021 | 1.1.1 Topological Electronic Materials |
Wang, Derek S., Tomáš Neuman, and Prineha Narang. 2021. “Spin Emitters beyond the Point Dipole Approximation in Nanomagnonic Cavities.” The Journal of Physical Chemistry C 125 (11): 6222–28. https://doi.org/10.1021/acs.jpcc.0c11536. | 2021 | 1.1.3 Quantum Probes |
Lesser, Omri, Andrew Saydjari, Marie Wesson, Amir Yacoby, and Yuval Oreg. 2021. “Phase-Induced Topological Superconductivity in a Planar Heterostructure.” Proceedings of the National Academy of Sciences 118 (27). https://doi.org/10.1073/pnas.2107377118. | 2021 | 1.1.3 Quantum Probes |
Li, Haoxiang, T. T. Zhang, A. Said, G. Fabbris, D. G. Mazzone, J. Q. Yan, D. Mandrus, et al. 2021. “Giant Phonon Anomalies in the Proximate Kitaev Quantum Spin Liquid α-RuCl3.” Nature Communications 12 (1). https://doi.org/10.1038/s41467-021-23826-1. | 2021 | 1.1.2 Quantum Spin Systems |
Väyrynen, Jukka I., Dmitry I. Pikulin, and Roman M. Lutchyn. 2021. “Majorana Signatures in Charge Transport through a Topological Superconducting Double-Island System.” Physical Review B 103 (20). https://doi.org/10.1103/physrevb.103.205427. | 2021 | 1.1.1 Topological Electronic Materials |
Yin, Jia-Xin, Shuheng H. Pan, and M. Zahid Hasan. 2021. “Probing Topological Quantum Matter with Scanning Tunnelling Microscopy.” Nature Reviews Physics 3 (4): 249–63. https://doi.org/10.1038/s42254-021-00293-7. | 2021 | 1.1.1 Topological Electronic Materials |
Sbierski, Björn, Elizabeth J. Dresselhaus, Joel E. Moore, and Ilya A. Gruzberg. 2021. “Criticality of Two-Dimensional Disordered Dirac Fermions in the Unitary Class and Universality of the Integer Quantum Hall Transition.” Physical Review Letters 126 (7). https://doi.org/10.1103/physrevlett.126.076801. | 2021 | 1.1.1 Topological Electronic Materials |
Kao, Wen-Han, Johannes Knolle, Gábor B. Halász, Roderich Moessner, and Natalia B. Perkins. 2021. “Vacancy-Induced Low-Energy Density of States in the Kitaev Spin Liquid.” Physical Review X 11 (1). https://doi.org/10.1103/physrevx.11.011034. | 2021 | 1.1.2 Quantum Spin Systems |
Balz, C., L. Janssen, P. Lampen-Kelley, A. Banerjee, Y. H. Liu, J.-Q. Yan, D. G. Mandrus, M. Vojta, and S. E. Nagler. 2021. “Field-Induced Intermediate Ordered Phase and Anisotropic Interlayer Interactions in α−RuCl3.” Physical Review B 103 (17). https://doi.org/10.1103/physrevb.103.174417. | 2021 | 1.1.2 Quantum Spin Systems |
Schönemann, Rico, Shusaku Imajo, Franziska Weickert, Jiaqiang Yan, David G. Mandrus, Yasumasa Takano, Eric L. Brosha, et al. 2020. “Thermal and Magnetoelastic Properties of α−RuCl3 in the Field-Induced Low-Temperature States.” Physical Review B 102 (21). https://doi.org/10.1103/physrevb.102.214432. | 2020 | 1.1.2 Quantum Spin Systems |
Scheie, A., N. E. Sherman, M. Dupont, S. E. Nagler, M. B. Stone, G. E. Granroth, J. E. Moore, and D. A. Tennant. 2021. “Detection of Kardar–Parisi–Zhang Hydrodynamics in a Quantum Heisenberg Spin-1/2 Chain.” Nature Physics 17 (6): 726–30. https://doi.org/10.1038/s41567-021-01191-6. | 2021 | 1.1.2 Quantum Spin Systems |
Klocke, Kai, David Aasen, Roger S. K. Mong, Eugene A. Demler, and Jason Alicea. 2021. “Time-Domain Anyon Interferometry in Kitaev Honeycomb Spin Liquids and Beyond.” Physical Review Letters 126 (17). https://doi.org/10.1103/physrevlett.126.177204. | 2021 | 1.1.2 Quantum Spin Systems |
Khindanov, Aleksei, Jason Alicea, Patrick Lee, William S. Cole, and Andrey E. Antipov. 2021. “Topological Superconductivity in Nanowires Proximate to a Diffusive Superconductor–Magnetic-Insulator Bilayer.” Physical Review B 103 (13). https://doi.org/10.1103/physrevb.103.134506. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |
Hamann, Danielle M., Sven P. Rudin, Tomoya Asaba, Filip Ronning, Dmitri Leo M. Cordova, Ping Lu, and David C. Johnson. 2021. “Predicting and Synthesizing Interface Stabilized 2D Layers.” Chemistry of Materials 33 (13): 5076–84. https://doi.org/10.1021/acs.chemmater.1c01064. | 2021 | 1.1.1.01 Topological materials prediction, synthesis, materials development |