Publications

Publication

Hossain, Md Shafayat, Qi Zhang, Zhiwei Wang, Nikhil Dhale, Wenhao Liu, Maksim Litskevich, Brian Casas, et al. 2024. “Quantum Transport Response of Topological Hinge Modes.” Nature Physics, February. https://doi.org/10.1038/s41567-024-02388-1.

20241.1.1.02 Controlling and Interacting with Anyons

Hua, C., D. A. Tennant, A. T. Savici, V. Sedov, G. Sala, and B. Winn. 2024. “Implementation of a Laser–Neutron Pump–Probe Capability for Inelastic Neutron Scattering.” Review of Scientific Instruments 95 (3). https://doi.org/10.1063/5.0181310.

20241.1.2.02 QSLM: Quantum Spin Liquid Materials

Lee, Sangyun, Andrew J. Woods, Minseong Lee, Shengzhi Zhang, Eun Sang Choi, A. O. Scheie, D. A. Tennant, J. Xing, A. S. Sefat, and R. Movshovich. 2024. “Magnetic Field-Temperature Phase Diagram of Spin-1/2 Triangular Lattice Antiferromagnet KYbSe$_2$.” arXiv. https://doi.org/10.48550/ARXIV.2402.06788.

20241.1.2.02 QSLM: Quantum Spin Liquid Materials

Hua, Chengyun, Lucas Lindsay, Yuya Shinohara, and David Alan Tennant. 2023. “Dynamics of Nonequilibrium Magnons in Gapped Heisenberg Antiferromagnets.” arXiv. https://doi.org/10.48550/ARXIV.2310.20617.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Sarkis, Colin L., John W. Villanova, Casey Eichstaedt, Adolfo G. Eguiluz, Jaime A. Fernandez-Baca, Masaaki Matsuda, Jiaqiang Yan, et al. 2023. “Experimental Evidence for Non-Spherical Magnetic Form Factor in Ru$^{3+}$.” arXiv. https://doi.org/10.48550/ARXIV.2311.00078.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Rechciński, Rafał, Aleksei Khindanov, Dmitry I. Pikulin, Jian Liao, Leonid P. Rokhinson, Yong P. Chen, Roman M. Lutchyn, and Jukka I. Väyrynen. 2023. “Influence of Disorder on Antidot Vortex Majorana States in 3D Topological Insulators.” arXiv. https://doi.org/10.48550/ARXIV.2310.03810.

20231.1.1.02 Controlling and Interacting with Anyons

Papaj, Michał. 2023. “Spectroscopic Signatures of Excitonic Order Effect on Quantum Spin Hall Edge States.” arXiv. https://doi.org/10.48550/ARXIV.2310.08810.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Schönemann, Rico, Priscila F S Rosa, Sean M Thomas, You Lai, Doan N Nguyen, John Singleton, Eric L Brosha, et al. 2023. “Sudden Adiabaticity Signals Reentrant Bulk Superconductivity in UTe2.” Edited by J C Davis. PNAS Nexus 3 (1). https://doi.org/10.1093/pnasnexus/pgad428.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Ahn, Jeonghwan, Seoung-Hun Kang, Mina Yoon, Panchapakesan Ganesh, and Jaron T. Krogel. 2023. “Stacking Faults and Topological Properties in MnBi2Te4: Reconciling Gapped and Gapless States.” The Journal of Physical Chemistry Letters 14 (40): 9052–59. https://doi.org/10.1021/acs.jpclett.3c01939.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Wang, Yan-Qi, Michał Papaj, and Joel E. Moore. 2023. “Breakdown of Helical Edge State Topologically Protected Conductance in Time-Reversal-Breaking Excitonic Insulators.” Physical Review B 108 (20). https://doi.org/10.1103/physrevb.108.205420.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Murciano, Sara, Pablo Sala, Yue Liu, Roger S. K. Mong, and Jason Alicea. 2023. “Measurement-Altered Ising Quantum Criticality.” Physical Review X 13 (4). https://doi.org/10.1103/physrevx.13.041042.

20231.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Heath, Joshuah T., Faranak Bahrami, Sangyun Lee, Roman Movshovich, Xiao Chen, Fazel Tafti, and Kevin Bedell. 2023. “Signatures of a Majorana-Fermi Surface in the Kitaev Magnet Ag3LiIr2O6.” Communications Physics 6 (1). https://doi.org/10.1038/s42005-023-01403-w.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Kang, Seoung-Hun, Wei Luo, Sinchul Yeom, Yaling Zheng, and Mina Yoon. 2023. “Two-Dimensional Dirac Semimetal Based on the Alkaline Earth Metal CaP3.” Physical Review Materials 7 (12). https://doi.org/10.1103/physrevmaterials.7.124202.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Kang, Seoung-Hun, Myeongjun Kang, Sang Woon Hwang, Sinchul Yeom, Mina Yoon, Jong Mok Ok, and Sangmoon Yoon. 2023. “Theoretical Investigation of Delafossite-Cu2ZnSnO4 as a Promising Photovoltaic Absorber.” Nanomaterials 13 (24): 3111. https://doi.org/10.3390/nano13243111.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Guguchia, Z., D. J. Gawryluk, S. Shin, Z. Hao, C. Mielke III, D. Das, I. Plokhikh, et al. 2023. “Hidden Magnetism Uncovered in a Charge Ordered Bilayer Kagome Material ScV6Sn6.” Nature Communications 14 (1). https://doi.org/10.1038/s41467-023-43503-9.

20231.1.1.02 Controlling and Interacting with Anyons

Adhikari, Pradip, Anuradha Wijesinghe, Anjali Rathore, Timothy Jinsoo Yoo, Gyehyeon Kim, Sinchul Yeom, Hyoung-Taek Lee, et al. 2024. “Structural Anisotropy in Sb Thin Films.” APL Materials 12 (1). https://doi.org/10.1063/5.0159670.

20241.1.1.01 Topological materials prediction, synthesis, materials development

Zhang, Zhuquan, Frank Y. Gao, Jonathan B. Curtis, Zi-Jie Liu, Yu-Che Chien, Alexander von Hoegen, Man Tou Wong, et al. 2024. “Terahertz Field-Induced Nonlinear Coupling of Two Magnon Modes in an Antiferromagnet.” Nature Physics, January. https://doi.org/10.1038/s41567-024-02386-3.

20241.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Zhang, Zhuquan, Frank Y. Gao, Yu-Che Chien, Zi-Jie Liu, Jonathan B. Curtis, Eric R. Sung, Xiaoxuan Ma, et al. 2024. “Terahertz-Field-Driven Magnon Upconversion in an Antiferromagnet.” Nature Physics, January. https://doi.org/10.1038/s41567-023-02350-7.

20241.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Gao, Shang, Ling-Fang Lin, Pontus Laurell, Qiang Chen, Qing Huang, Clarina dela Cruz, Krishnamurthy V. Vemuru, et al. 2024. “Spinon Continuum in the Heisenberg Quantum Chain Compound Sr2V3O9.” Physical Review B 109 (2). https://doi.org/10.1103/physrevb.109.l020402.

20241.1.2.02 QSLM: Quantum Spin Liquid Materials

Dolgirev, Pavel E., Marios H. Michael, Jonathan B. Curtis, Daniel E. Parker, Daniele Nicoletti, Michele Buzzi, Michael Fechner, Andrea Cavalleri, and Eugene Demler. 2024. “Optically Induced Umklapp Shift Currents in Striped Cuprates.” Physical Review B 109 (4). https://doi.org/10.1103/physrevb.109.045150.

20241.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Koh, Jin Ming, Jason Alicea, and Étienne Lantagne-Hurtubise. 2024. “Correlated Phases in Spin-Orbit-Coupled Rhombohedral Trilayer Graphene.” Physical Review B 109 (3). https://doi.org/10.1103/physrevb.109.035113.

20241.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Scheie, A. O., Y. Kamiya, Hao Zhang, Sangyun Lee, A. J. Woods, M. O. Ajeesh, M. G. Gonzalez, et al. 2024. “Nonlinear Magnons and Exchange Hamiltonians of the Delafossite Proximate Quantum Spin Liquid Candidates KYbSe2 and NaYbSe2.” Physical Review B 109 (1). https://doi.org/10.1103/physrevb.109.014425.

20241.1.2.02 QSLM: Quantum Spin Liquid Materials

Son, Jun Ho, Jason Alicea, and Olexei I. Motrunich. 2024. “Edge States of Two-Dimensional Time-Reversal Invariant Topological Superconductors with Strong Interactions and Disorder: A View from the Lattice.” Physical Review B 109 (3). https://doi.org/10.1103/physrevb.109.035138.

20241.1.2.02 QSLM: Quantum Spin Liquid Materials

Kowalski, Karol, Nicholas P. Bauman, Guang Hao Low, Martin Roetteler, John J. Rehr, and Fernando D. Vila. 2024. “Capturing Many-Body Correlation Effects with Quantum and Classical Computing.” arXiv. https://doi.org/10.48550/ARXIV.2402.11418.

20241.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure

Shi, Yue, Tommy Nguyen, Samuel Stein, Tim Stavenger, Marvin Warner, Martin Roetteler, Torsten Hoefler, and Ang Li. 2023. “A Reference Implementation for a Quantum Message Passing Interface.” Proceedings of the SC ’23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, November. https://doi.org/10.1145/3624062.3624212.

20231.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Hua, Fei, Meng Wang, Gushu Li, Bo Peng, Chenxu Liu, Muqing Zheng, Samuel Stein, et al. 2023. “QASMTrans: A QASM Quantum Transpiler Framework for NISQ Devices.” Proceedings of the SC ’23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, November. https://doi.org/10.1145/3624062.3624222.

20231.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Sears, J., Y. Shen, M. J. Krogstad, H. Miao, Jiaqiang Yan, Subin Kim, W. He, et al. 2023. “Stacking Disorder in α−RuCl3 Investigated via x-Ray Three-Dimensional Difference Pair Distribution Function Analysis.” Physical Review B 108 (14). https://doi.org/10.1103/physrevb.108.144419.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Zhang, Heda, Andrew F. May, Hu Miao, Brian C. Sales, David G. Mandrus, Stephen E. Nagler, Michael A. McGuire, and Jiaqiang Yan. 2023. “Sample-Dependent and Sample-Independent Thermal Transport Properties of α−RuCl3.” Physical Review Materials 7 (11). https://doi.org/10.1103/physrevmaterials.7.114403.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Zhang, Heda, Michael A. McGuire, Andrew F. May, Hsin-Yun Chao, Qiang Zheng, Miaofang Chi, Brian C. Sales, et al. 2024. “Stacking Disorder and Thermal Transport Properties of α−RuCl3.” Physical Review Materials 8 (1). https://doi.org/10.1103/physrevmaterials.8.014402.

20241.1.2.02 QSLM: Quantum Spin Liquid Materials

Morgan, Zachary, Iris Ye, Colin L. Sarkis, Xiaoping Wang, Stephen Nagler, and Jiaqiang Yan. 2024. “Structure Transition and Zigzag Magnetic Order in Ir/Rh-Substituted Honeycomb Lattice α−RuCl3.” Physical Review Materials 8 (1). https://doi.org/10.1103/physrevmaterials.8.016201.

20241.1.2.02 QSLM: Quantum Spin Liquid Materials

Kumaran, Keerthi, Manas Sajjan, Sangchul Oh, and Sabre Kais. 2024. “Random Projection Using Random Quantum Circuits.” Physical Review Research 6 (1). https://doi.org/10.1103/physrevresearch.6.013010.

20241.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Zheng, Muqing, Bo Peng, Ang Li, Xiu Yang, and Karol Kowalski. 2023. “Unleashed from Constrained Optimization: Quantum Computing for Quantum Chemistry Employing Generator Coordinate Method.” arXiv. https://doi.org/10.48550/ARXIV.2312.07691.

20231.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Alexeev, Yuri, Maximilian Amsler, Paul Baity, Marco Antonio Barroca, Sanzio Bassini, Torey Battelle, Daan Camps, et al. 2023. “Quantum-Centric Supercomputing for Materials Science: A Perspective on Challenges and Future Directions.” arXiv. https://doi.org/10.48550/ARXIV.2312.09733.

20231.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Wang, Ying, Valeria Lauter, Olga Maximova, Shiva T. Konakanchi, Pramey Upadhyaya, Jong Keum, Haile Ambaye, et al. 2023. “Exchange Coupling in Bi2Se3/EuSe Heterostructures and Evidence of Interfacial Antiferromagnetic Order Formation.” Physical Review B 108 (19). https://doi.org/10.1103/physrevb.108.195308.

20231.1.1.02 Controlling and Interacting with Anyons

Wu, Anbang, Yufei Ding, and Ang Li. 2023. “QuComm: Optimizing Collective Communication for Distributed Quantum Computing.” 56th Annual IEEE/ACM International Symposium on Microarchitecture, October. https://doi.org/10.1145/3613424.3614253.

20231.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Wang, Meng, Fei Hua, Chenxu Liu, Nicholas Bauman, Karol Kowalski, Daniel Claudino, Travis Humble, Prashant Nair, and Ang Li. 2023. “Enabling Scalable VQE Simulation on Leading HPC Systems.” Proceedings of the SC ’23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, November. https://doi.org/10.1145/3624062.3624221.

20231.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Selvarajan, Raja, Manas Sajjan, Travis S. Humble, and Sabre Kais. 2023. “Dimensionality Reduction with Variational Encoders Based on Subsystem Purification.” Mathematics 11 (22): 4678. https://doi.org/10.3390/math11224678.

20231.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Varnavides, Georgios, Amir Yacoby, Claudia Felser, and Prineha Narang. 2023. “Charge Transport and Hydrodynamics in Materials.” Nature Reviews Materials 8 (11): 726–41. https://doi.org/10.1038/s41578-023-00597-3.

20231.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Rizzo, Daniel J., Jin Zhang, Bjarke S. Jessen, Francesco L. Ruta, Matthew Cothrine, Jiaqiang Yan, David G. Mandrus, et al. 2023. “Polaritonic Probe of an Emergent 2D Dipole Interface.” Nano Letters 23 (18): 8426–35. https://doi.org/10.1021/acs.nanolett.3c01611.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Yao, Weiliang, Qing Huang, Tao Xie, Andrey Podlesnyak, Alexander Brassington, Chengkun Xing, Ranuri S. Dissanayaka Mudiyanselage, et al. 2023. “Continuous Spin Excitations in the Three-Dimensional Frustrated Magnet K2Ni2(SO4)3.” Physical Review Letters 131 (14). https://doi.org/10.1103/physrevlett.131.146701.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Scheie, A. O., E. A. Ghioldi, J. Xing, J. A. M. Paddison, N. E. Sherman, M. Dupont, L. D. Sanjeewa, et al. 2023. “Proximate Spin Liquid and Fractionalization in the Triangular Antiferromagnet KYbSe2.” Nature Physics 20 (1): 74–81. https://doi.org/10.1038/s41567-023-02259-1.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Scheie, A., Pyeongjae Park, J. W. Villanova, G. E. Granroth, C. L. Sarkis, Hao Zhang, M. B. Stone, et al. 2023. “Spin Wave Hamiltonian and Anomalous Scattering in NiPS3.” Physical Review B 108 (10). https://doi.org/10.1103/physrevb.108.104402.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Xie, Ying-Ming, Étienne Lantagne-Hurtubise, Andrea F. Young, Stevan Nadj-Perge, and Jason Alicea. 2023. “Gate-Defined Topological Josephson Junctions in Bernal Bilayer Graphene.” Physical Review Letters 131 (14). https://doi.org/10.1103/physrevlett.131.146601.

20231.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Goryca, Mateusz, Xiaoyu Zhang, Justin Ramberger, Justin D. Watts, Cristiano Nisoli, Chris Leighton, Peter Schiffer, and Scott A. Crooker. 2023. “Deconstructing Magnetization Noise: Degeneracies, Phases, and Mobile Fractionalized Excitations in Tetris Artificial Spin Ice.” Proceedings of the National Academy of Sciences 120 (43). https://doi.org/10.1073/pnas.2310777120.

20231.3.3.03 Squeezed Readout of Quantum Sensors

Fuchs, Christopher, Saquib Shamim, Pragya Shekhar, Lena Fürst, Johannes Kleinlein, Jukka I. Väyrynen, Hartmut Buhmann, and Laurens W. Molenkamp. 2023. “Kondo Interaction of Quantum Spin Hall Edge Channels with Charge Puddles.” Physical Review B 108 (20). https://doi.org/10.1103/physrevb.108.205302.

20231.1.1.02 Controlling and Interacting with Anyons

Lüpke, Felix, Marek Kolmer, Jiaqiang Yan, Hao Chang, Paolo Vilmercati, Hanno H. Weitering, Wonhee Ko, and An-Ping Li. 2023. “Anti-Site Defect-Induced Disorder in Compensated Topological Magnet MnBi2-XSbxTe4.” Communications Materials 4 (1). https://doi.org/10.1038/s43246-023-00408-w.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Li, Xiangzhi, Andrew C. Jones, Junho Choi, Huan Zhao, Vigneshwaran Chandrasekaran, Michael T. Pettes, Andrei Piryatinski, et al. 2023. “Proximity-Induced Chiral Quantum Light Generation in Strain-Engineered WSe2/NiPS3 Heterostructures.” Nature Materials 22 (11): 1311–16. https://doi.org/10.1038/s41563-023-01645-7.

20231.3.1.01 Hybrid Quantum Sensors

Oh, Sangchul, and Sabre Kais. 2023. “Cutoff Phenomenon and Entropic Uncertainty for Random Quantum Circuits.” Electronic Structure 5 (3): 035004. https://doi.org/10.1088/2516-1075/acf2d3.

20231.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Li, Junxu, Barbara A. Jones, and Sabre Kais. 2023. “Toward Perturbation Theory Methods on a Quantum Computer.” Science Advances 9 (19). https://doi.org/10.1126/sciadv.adg4576.

20231.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Sajjan, Manas, Vinit Singh, Raja Selvarajan, and Sabre Kais. 2023. “Imaginary Components of Out-of-Time-Order Correlator and Information Scrambling for Navigating the Learning Landscape of a Quantum Machine Learning Model.” Physical Review Research 5 (1). https://doi.org/10.1103/physrevresearch.5.013146.

20231.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Sajjan, Manas, Rishabh Gupta, Sumit Suresh Kale, Vinit Singh, Keerthi Kumaran, and Sabre Kais. 2023. “Physics-Inspired Quantum Simulation of Resonating Valence Bond States─A Prototypical Template for a Spin-Liquid Ground State.” The Journal of Physical Chemistry A 127 (41): 8751–64. https://doi.org/10.1021/acs.jpca.3c05172.

20231.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Muruganandam, Varadharajan, Manas Sajjan, and Sabre Kais. 2023. “Foray into the Topology of Poly‐bi‐[8]‐annulenylene.” Natural Sciences 3 (4). https://doi.org/10.1002/ntls.20230015.

20231.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Li, Ang, Alessandro Baroni, Ionel Stetcu, and Travis S. Humble. 2023. “Deep Quantum Circuit Simulations of Low-Energy Nuclear States.” arXiv. https://doi.org/10.48550/ARXIV.2310.17739.

20231.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Feldman, Matthew, Tyler Volkoff, Zoe Holmes, Seongjin Hong, Claire Marvinney, Raphael Pooser, Andrew Sornborger, and Alberto M. Marino. 2023. “Towards a Continuous Variable Quantum Compiler.” Optica Quantum 2.0 Conference and Exhibition. https://doi.org/10.1364/quantum.2023.qth4b.5.

20231.2.2.01 CVQCP: Continuous Variable Quantum Computing with Photons, 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and

Qin, Juehang, and Rafael F. Lang. 2023. “Fast Estimation of the Look-Elsewhere Effect Using Gaussian Random Fields.” ArXiv. https://doi.org/10.48550/ARXIV.2306.01713.

20231.3.3.03 Squeezed Readout of Quantum Sensors

Rustagi, Avinash, Iacopo Bertelli, Toeno van der Sar, and Pramey Upadhyaya. 2020. “Sensing Chiral Magnetic Noise via Quantum Impurity Relaxometry.” Physical Review B 102 (22). https://doi.org/10.1103/physrevb.102.220403.

20201.3.1.01 Hybrid Quantum Sensors

Solanki, Abhishek B., Simeon I. Bogdanov, Mohammad M. Rahman, Avinash Rustagi, Neil R. Dilley, Tingting Shen, Wenqi Tong, et al. 2022. “Electric Field Control of Interaction between Magnons and Quantum Spin Defects.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.l012025.

20221.3.1.01 Hybrid Quantum Sensors

Cheng, Guanghui, Mohammad Mushfiqur Rahman, Zhiping He, Andres Llacsahuanga Allcca, Avinash Rustagi, Kirstine Aggerbeck Stampe, Yanglin Zhu, et al. 2022. “Emergence of Electric-Field-Tunable Interfacial Ferromagnetism in 2D Antiferromagnet Heterostructures.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-34812-6.

20221.1.1.02 Controlling and Interacting with Anyons

Cheng, Guanghui, Mohammad Mushfiqur Rahman, Andres Llacsahuanga Allcca, Avinash Rustagi, Xingtao Liu, Lina Liu, Lei Fu, et al. 2023. “Electrically Tunable Moiré Magnetism in Twisted Double Bilayers of Chromium Triiodide.” Nature Electronics 6 (6): 434–42. https://doi.org/10.1038/s41928-023-00978-0.

20231.1.1.02 Controlling and Interacting with Anyons

Konakanchi, Shiva T., Jukka I. Väyrynen, Yong P. Chen, Pramey Upadhyaya, and Leonid P. Rokhinson. 2023. “Platform for Braiding Majorana Modes with Magnetic Skyrmions.” Physical Review Research 5 (3). https://doi.org/10.1103/physrevresearch.5.033109.

20231.3.1.01 Hybrid Quantum Sensors

Kudyshev, Zhaxylyk A., Demid Sychev, Zachariah Martin, Omer Yesilyurt, Simeon I. Bogdanov, Xiaohui Xu, Pei-Gang Chen, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2023. “Machine Learning Assisted Quantum Super-Resolution Microscopy.” Nature Communications 14 (1). https://doi.org/10.1038/s41467-023-40506-4.

20231.2.2.07 MLAO: Machine Learning Assisted Optimization of Quantum Device Design

Yesilyurt, Omer, Samuel Peana, Vahagn Mkhitaryan, Karthik Pagadala, Vladimir M. Shalaev, Alexander V. Kildishev, and Alexandra Boltasseva. 2023. “Fabrication-Conscious Neural Network Based Inverse Design of Single-Material Variable-Index Multilayer Films.” Nanophotonics 12 (5): 993–1006. https://doi.org/10.1515/nanoph-2022-0537.

20231.2.2.07 MLAO: Machine Learning Assisted Optimization of Quantum Device Design

Xu, Xiaohui, Zachariah O. Martin, Michael Titze, Yongqiang Wang, Demid Sychev, Jacob Henshaw, Alexei S. Lagutchev, et al. 2023. “Fabrication of Single Color Centers in Sub-50 Nm Nanodiamonds Using Ion Implantation.” Nanophotonics 12 (3): 485–94. https://doi.org/10.1515/nanoph-2022-0678.

20231.3.1.01 Hybrid Quantum Sensors

Martin, Zachariah O., Alexander Senichev, Samuel Peana, Benjamin J. Lawrie, Alexei S. Lagutchev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2023. “Photophysics of Intrinsic Single‐Photon Emitters in Silicon Nitride at Low Temperatures.” Advanced Quantum Technologies 6 (11). https://doi.org/10.1002/qute.202300099.

20231.3.1.01 Hybrid Quantum Sensors

Volkoff, T. J., and Yiğit Subaşı. 2022. “Ancilla-Free Continuous-Variable SWAP Test.” ArXiv. https://doi.org/10.48550/ARXIV.2202.09923.

20221.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure

Somma, Rolando D., and Yigit Subasi. 2020. “Complexity of Quantum State Verification in the Quantum Linear Systems Problem.” ArXiv. https://doi.org/10.48550/ARXIV.2007.15698.

20211.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure

Gu, Shouzhen, Rolando D. Somma, and Burak Şahinoğlu. 2021. “Fast-Forwarding Quantum Evolution.” ArXiv. https://doi.org/10.48550/ARXIV.2105.07304.

20211.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure

Şahinoğlu, Burak, and Rolando D. Somma. 2020. “Hamiltonian Simulation in the Low-Energy Subspace.” ArXiv. https://doi.org/10.48550/ARXIV.2006.02660.

20201.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure

Hua, Chengyun, Claire E. Marvinney, Seongjin Hong, Matthew Feldman, Yun‐Yi Pai, Michael Chilcote, Joshua Rabinowitz, Raphael C. Pooser, Alberto M. Marino, and Benjamin J. Lawrie. 2023. “Quantum Enhanced Probes of Magnetic Circular Dichroism.” Advanced Quantum Technologies, September. https://doi.org/10.1002/qute.202300126.

20231.3.3.03 Squeezed Readout of Quantum Sensors

Somma, Rolando D., and Yiğit Subaşı. 2021. “Complexity of Quantum State Verification in the Quantum Linear Systems Problem.” PRX Quantum 2 (1). https://doi.org/10.1103/prxquantum.2.010315.

20211.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure

Gu, Shouzhen, Rolando D. Somma, and Burak Şahinoğlu. 2021. “Fast-Forwarding Quantum Evolution.” Quantum 5 (November): 577. https://doi.org/10.22331/q-2021-11-15-577.

20211.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure

Ahn, Jeonghwan, Seoung-Hun Kang, Mao-Hua Du, Mina Yoon, Jaron T. Krogel, and Fernando A. Reboredo. 2023. “Procedures for Assessing the Stability of Proposed Topological Materials.” The Journal of Physical Chemistry C 127 (34): 17021–28. https://doi.org/10.1021/acs.jpcc.3c02173.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Mondal, Ashok, Chandan Biswas, Sehwan Park, Wujoon Cha, Seoung-Hun Kang, Mina Yoon, Soo Ho Choi, Ki Kang Kim, and Young Hee Lee. 2023. “Low Ohmic Contact Resistance and High on/off Ratio in Transition Metal Dichalcogenides Field-Effect Transistors via Residue-Free Transfer.” Nature Nanotechnology 19 (1): 34–43. https://doi.org/10.1038/s41565-023-01497-x.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Wang, Meng, Bo Fang, Ang Li, and Prashant Nair. 2023. “Efficient QAOA Optimization Using Directed Restarts and Graph Lookup.” Proceedings of the 2023 International Workshop on Quantum Classical Cooperative, August. https://doi.org/10.1145/3588983.3596680.

20231.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Li, Shaozhi, Lun-Hui Hu, Rui-Xing Zhang, and Satoshi Okamoto. 2023. “Topological Superconductivity from Forward Phonon Scatterings.” Communications Physics 6 (1). https://doi.org/10.1038/s42005-023-01311-z.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Zhang, Shengzhi, Sangyun Lee, Andrew J. Woods, William K. Peria, Sean M. Thomas, Roman Movshovich, Eric Brosha, et al. 2023. “Electronic and Magnetic Phase Diagrams of the Kitaev Quantum Spin Liquid Candidate Na2Co2TeO6.” Physical Review B 108 (6). https://doi.org/10.1103/physrevb.108.064421.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Mueller, Niklas, Joseph A. Carolan, Andrew Connelly, Zohreh Davoudi, Eugene F. Dumitrescu, and Kübra Yeter-Aydeniz. 2023. “Quantum Computation of Dynamical Quantum Phase Transitions and Entanglement Tomography in a Lattice Gauge Theory.” PRX Quantum 4 (3). https://doi.org/10.1103/prxquantum.4.030323.

20231.2.1.02 EMQD: Error mitigation on near‐term quantum devices

Gu, Chenyi, Z. H. Sun, G. Hagen, and T. Papenbrock. 2023. “Entanglement Entropy of Nuclear Systems.” ArXiv. https://doi.org/10.48550/ARXIV.2303.04799.

20231.2.2.05 Strong interactions and dynamics: from quarks to nuclei

Kiss, Oriel, Michele Grossi, Pavel Lougovski, Federico Sanchez, Sofia Vallecorsa, and Thomas Papenbrock. 2022. “Quantum Computing of the Li6 Nucleus via Ordered Unitary Coupled Clusters.” Physical Review C 106 (3). https://doi.org/10.1103/physrevc.106.034325.

20221.2.2.05 Strong interactions and dynamics: from quarks to nuclei

Sun, Z. H., C. A. Bell, G. Hagen, and T. Papenbrock. 2022. “How to Renormalize Coupled Cluster Theory.” Physical Review C 106 (6). https://doi.org/10.1103/physrevc.106.l061302.

20221.2.2.05 Strong interactions and dynamics: from quarks to nuclei

Sun, Z. H., G. Hagen, and T. Papenbrock. 2023. “Coupled-Cluster Theory for Strong Entanglement in Nuclei.” Physical Review C 108 (1). https://doi.org/10.1103/physrevc.108.014307.

20231.2.2.05 Strong interactions and dynamics: from quarks to nuclei

Guo, Yucheng, Mason Klemm, Ji Seop Oh, Yaofeng Xie, Bing-Hua Lei, Luca Moreschini, Cheng Chen, et al. 2023. “Spectral Evidence for Unidirectional Charge Density Wave in Detwinned BaNi2As2.” Physical Review B 108 (8). https://doi.org/10.1103/physrevb.108.l081104.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Lv, Chenwei, Ren Zhang, and Qi Zhou. 2023. “Building Krylov Complexity from Circuit Complexity.” arXiv. https://doi.org/10.48550/ARXIV.2303.07343.

20231.2.2.04 QSTQM‐BEC: Quantum simulation of topological quantum materials and fiel

Zhang, Shaoliang, Chenwei Lv, and Qi Zhou. 2023. “Synthetic Tensor Gauge Fields.” arXiv. https://doi.org/10.48550/ARXIV.2306.15663.

20201.2.2.04 QSTQM‐BEC: Quantum simulation of topological quantum materials and fiel

Illa, Marc, and Martin J. Savage. 2023. “Multi-Neutrino Entanglement and Correlations in Dense Neutrino Systems.” Physical Review Letters 130 (22). https://doi.org/10.1103/physrevlett.130.221003.

20231.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure

Villanova, John W., Allen O. Scheie, D. Alan Tennant, Satoshi Okamoto, and Tom Berlijn. 2023. “First-Principles Derivation of Magnetic Interactions in the Triangular Quantum Spin Liquid Candidates KYbCh2 (Ch=S,Se,Te) and AYbSe2 (A=Na,Rb).” Physical Review Research 5 (3). https://doi.org/10.1103/physrevresearch.5.033050.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Nirala, Gaurav, Siva T. Pradyumna, Ashok Kumar, and Alberto M. Marino. 2023. “Information Encoding in the Spatial Correlations of Entangled Twin Beams.” Science Advances 9 (22). https://doi.org/10.1126/sciadv.adf9161.

20231.2.2.01 CVQCP: Continuous Variable Quantum Computing with Photons

Cookmeyer, Tessa, and Joel E. Moore. 2023. “Dynamics of Fractionalized Mean-Field Theories: Consequences for Kitaev Materials.” Physical Review B 107 (22). https://doi.org/10.1103/physrevb.107.224428.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Curtis, Jonathan B., Ankit Disa, Michael Fechner, Andrea Cavalleri, and Prineha Narang. 2023. “Dynamics of Photoinduced Ferromagnetism in Oxides with Orbital Degeneracy.” Physical Review Research 5 (1). https://doi.org/10.1103/physrevresearch.5.013204.

20231.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Welakuh, Davis M., and Prineha Narang. 2023. “Tunable Nonlinearity and Efficient Harmonic Generation from a Strongly Coupled Light–Matter System.” ACS Photonics 10 (2): 383–93. https://doi.org/10.1021/acsphotonics.2c00966.

20231.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Lane, Christopher, Ruiqi Zhang, Bernardo Barbiellini, Robert S. Markiewicz, Arun Bansil, Jianwei Sun, and Jian-Xin Zhu. 2023. “Competing Incommensurate Spin Fluctuations and Magnetic Excitations in Infinite-Layer Nickelate Superconductors.” Communications Physics 6 (1). https://doi.org/10.1038/s42005-023-01213-0.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Curtis, Jonathan B., Ioannis Petrides, and Prineha Narang. 2023. “Finite-Momentum Instability of a Dynamical Axion Insulator.” Physical Review B 107 (20). https://doi.org/10.1103/physrevb.107.205118.

20231.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Luo, Wei, Mao-Hua Du, Fernando A Reboredo, and Mina Yoon. 2023. “Non-Volatile Electric Control of Magnetic and Topological Properties of MnBi2Te4 Thin Films *.” 2D Materials 10 (3): 035008. https://doi.org/10.1088/2053-1583/accaf7.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Weiland, Ashley, Frederico B. Santos, Joe D. Thompson, Eric D. Bauer, Sean M. Thomas, and Priscila F. S. Rosa. 2023. “Differences in the Resistive and Thermodynamic Properties of the Single Crystalline Chiral Superconductor Candidate SrPtAs.” Physical Review Materials 7 (5). https://doi.org/10.1103/physrevmaterials.7.054802.

20231.1.1.01 Topological materials prediction, synthesis, materials development

McGuire, Michael A., Heda Zhang, Andrew F. May, Satoshi Okamoto, Robert G. Moore, Xiaoping Wang, Clément Girod, Sean M. Thomas, Filip Ronning, and Jiaqiang Yan. 2023. “Superconductivity by Alloying the Topological Insulator SnBi2Te4.” Physical Review Materials 7 (3). https://doi.org/10.1103/physrevmaterials.7.034802.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Multer, Daniel, Jia-Xin Yin, Md. Shafayat Hossain, Xian Yang, Brian C. Sales, Hu Miao, William R. Meier, et al. 2023. “Imaging Real-Space Flat Band Localization in Kagome Magnet FeSn.” Communications Materials 4 (1). https://doi.org/10.1038/s43246-022-00328-1.

20231.1.1.02 Controlling and Interacting with Anyons

Cole, Andrew, Alenna Streeter, Adolfo O. Fumega, Xiaohan Yao, Zhi-Cheng Wang, Erxi Feng, Huibo Cao, Jose L. Lado, Stephen E. Nagler, and Fazel Tafti. 2023. “Extreme Sensitivity of the Magnetic Ground State to Halide Composition in FeCl3−xBrx.” Physical Review Materials 7 (6). https://doi.org/10.1103/physrevmaterials.7.064401.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Zhang, Song-Bo, Xiaoxiong Liu, Md Shafayat Hossain, Jia-Xin Yin, M. Zahid Hasan, and Titus Neupert. 2023. “Emergent Edge Modes in Shifted Quasi-One-Dimensional Charge Density Waves.” Physical Review Letters 130 (10). https://doi.org/10.1103/physrevlett.130.106203.

20231.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Curtis, Jonathan B., Nicholas R. Poniatowski, Yonglong Xie, Amir Yacoby, Eugene Demler, and Prineha Narang. 2023. “Stabilizing Fluctuating Spin-Triplet Superconductivity in Graphene via Induced Spin-Orbit Coupling.” Physical Review Letters 130 (19). https://doi.org/10.1103/physrevlett.130.196001.

20231.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Moore, Robert G., Qiangsheng Lu, Hoyeon Jeon, Xiong Yao, Tyler Smith, Yun‐Yi Pai, Michael Chilcote, et al. 2023. “Monolayer Superconductivity and Tunable Topological Electronic Structure at the Fe(Te,Se)/Bi2Te3 Interface.” Advanced Materials 35 (22). https://doi.org/10.1002/adma.202210940.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Cheng, Guanghui, Mohammad Mushfiqur Rahman, Andres Llacsahuanga Allcca, Avinash Rustagi, Xingtao Liu, Lina Liu, Lei Fu, et al. 2023. “Electrically Tunable Moiré Magnetism in Twisted Double Bilayers of Chromium Triiodide.” Nature Electronics 6 (6): 434–42. https://doi.org/10.1038/s41928-023-00978-0.

20231.1.1.02 Controlling and Interacting with Anyons

Cohen, Liam A., Noah L. Samuelson, Taige Wang, Kai Klocke, Cian C. Reeves, Takashi Taniguchi, Kenji Watanabe, Sagar Vijay, Michael P. Zaletel, and Andrea F. Young. 2023. “Nanoscale Electrostatic Control in Ultraclean van Der Waals Heterostructures by Local Anodic Oxidation of Graphite Gates.” Nature Physics 19 (10): 1502–8. https://doi.org/10.1038/s41567-023-02114-3.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Yazdani, Ali, Felix von Oppen, Bertrand I. Halperin, and Amir Yacoby. 2023. “Hunting for Majoranas.” Science 380 (6651). https://doi.org/10.1126/science.ade0850.

20231.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Papaj, Michał, and Cyprian Lewandowski. 2023. “Probing Correlated States with Plasmons.” Science Advances 9 (17). https://doi.org/10.1126/sciadv.adg3262.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Klein, Julian, Benjamin Pingault, Matthias Florian, Marie-Christin Heißenbüttel, Alexander Steinhoff, Zhigang Song, Kierstin Torres, et al. 2023. “The Bulk van Der Waals Layered Magnet CrSBr Is a Quasi-1D Material.” ACS Nano 17 (6): 5316–28. https://doi.org/10.1021/acsnano.2c07316.

20231.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Farrell, Roland C., Ivan A. Chernyshev, Sarah J. M. Powell, Nikita A. Zemlevskiy, Marc Illa, and Martin J. Savage. 2023. “Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions. I. Axial Gauge.” Physical Review D 107 (5). https://doi.org/10.1103/physrevd.107.054512.

20231.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits, 1.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure, 1.2.2.05 Strong interactions and dynamics: from quarks to nuclei, 1.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Farrell, Roland C., Ivan A. Chernyshev, Sarah J. M. Powell, Nikita A. Zemlevskiy, Marc Illa, and Martin J. Savage. 2023. “Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions. II. Single-Baryon β-Decay in Real Time.” Physical Review D 107 (5). https://doi.org/10.1103/physrevd.107.054513.

20231.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure, 1.2.2.02 QSTQC: Quantum Simulations on Trapped‐Ion Quantum Computers (disabled), 1.2.2.05 Strong interactions and dynamics: from quarks to nuclei

Li, Guangjie, Elio J. König, and Jukka I. Väyrynen. 2023. “Topological Symplectic Kondo Effect.” Physical Review B 107 (20). https://doi.org/10.1103/physrevb.107.l201401.

20231.1.1.02 Controlling and Interacting with Anyons

Bieniek, Maciej, Jukka I. Väyrynen, Gang Li, Titus Neupert, and Ronny Thomale. 2023. “Theory of Glide Symmetry Protected Helical Edge States in a WTe2 Monolayer.” Physical Review B 107 (19). https://doi.org/10.1103/physrevb.107.195105.

20231.1.1.02 Controlling and Interacting with Anyons

Brahlek, Matthew, and Robert G. Moore. 2023. “Surface-State Limbo.” Nature Physics 19 (7): 924–25. https://doi.org/10.1038/s41567-023-02015-5.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Senichev, Alexander, Samuel Peana, Zachariah O. Martin, Omer Yesilyurt, Demid Sychev, Alexei S. Lagutchev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2022. “Silicon Nitride Waveguides with Intrinsic Single-Photon Emitters for Integrated Quantum Photonics.” ACS Photonics 9 (10): 3357–65. https://doi.org/10.1021/acsphotonics.2c00750.

20221.3.1.01 Hybrid Quantum Sensors

Sajjan, Manas, Hadiseh Alaeian, and Sabre Kais. 2022. “Magnetic Phases of Spatially Modulated Spin-1 Chains in Rydberg Excitons: Classical and Quantum Simulations.” The Journal of Chemical Physics 157 (22). https://doi.org/10.1063/5.0128283.

20221.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Adams, Duncan, Daniel Baxter, Hannah Day, Rouven Essig, and Yonatan Kahn. 2023. “Measuring the Migdal Effect in Semiconductors for Dark Matter Detection.” Physical Review D 107 (4). https://doi.org/10.1103/physrevd.107.l041303.

20231.3.3.01 Low Background Sensors and Materials

Yang, Xian P., Yigui Zhong, Sougata Mardanya, Tyler A. Cochran, Ramakanta Chapai, Akifumi Mine, Junyi Zhang, et al. 2023. “Coexistence of Bulk-Nodal and Surface-Nodeless Cooper Pairings in a Superconducting Dirac Semimetal.” Physical Review Letters 130 (4). https://doi.org/10.1103/physrevlett.130.046402.

20231.1.1.02 Controlling and Interacting with Anyons

Tay, D., T. Shang, Priscila F. S. Rosa, F. B. Santos, J. D. Thompson, Z. Fisk, H.-R. Ott, and T. Shiroka. 2023. “Nodeless Superconductivity in the Noncentrosymmetric Compound ThIrSi.” Physical Review B 107 (6). https://doi.org/10.1103/physrevb.107.064507.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Kirby, Robert J., Angela Montanaro, Francesca Giusti, André Koch-Liston, Shiming Lei, Ioannis Petrides, Prineha Narang, et al. 2023. “Ultrafast Dynamics of the Topological Semimetal GdSbxTe2–x–δ in the Presence and Absence of a Charge Density Wave.” The Journal of Physical Chemistry C 127 (1): 577–84. https://doi.org/10.1021/acs.jpcc.2c06120.

20231.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Yan, J.-Q., and M. A. McGuire. 2023. “Self-Selecting Vapor Growth of Transition-Metal-Halide Single Crystals.” Physical Review Materials 7 (1). https://doi.org/10.1103/physrevmaterials.7.013401.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Li, Guangjie, Yuval Oreg, and Jukka I. Väyrynen. 2023. “Multichannel Topological Kondo Effect.” Physical Review Letters 130 (6). https://doi.org/10.1103/physrevlett.130.066302.

20231.1.1.02 Controlling and Interacting with Anyons

Menon, Varun, Nicholas E. Sherman, Maxime Dupont, Allen O. Scheie, D. Alan Tennant, and Joel E. Moore. 2023. “Multipartite Entanglement in the One-Dimensional Spin- 12 Heisenberg Antiferromagnet.” Physical Review B 107 (5). https://doi.org/10.1103/physrevb.107.054422.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Cookmeyer, Tessa, and Joel E. Moore. 2022. “Dynamics of Fractionalized Mean-Field Theories: Consequences for Kitaev Materials.” ArXiv. https://doi.org/10.48550/ARXIV.2206.04788.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Papaj, Michał, and Cyprian Lewandowski. 2022. “Probing Correlated States with Plasmonic Origami.” arXiv. https://doi.org/10.48550/ARXIV.2212.01367.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Papaj, Michał, and Joel E. Moore. 2022. “Current-Enabled Optical Conductivity of Superconductors.” Physical Review B 106 (22). https://doi.org/10.1103/physrevb.106.l220504.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Scheie, A., Pyeongjae Park, J. W. Villanova, G. E. Granroth, C. L. Sarkis, Hao Zhang, M. B. Stone, et al. 2023. “Spin Wave Hamiltonian and Anomalous Scattering in NiPS$_3$.” ArXiv. https://doi.org/10.48550/ARXIV.2302.07242.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Zhang, Heda, Andrew May, Hu Miao, Brian Sales, David Mandrus, Stephen Nagler, Michael McGuire, and Jiaqiang Yan. 2023. “The Sample-Dependent and Sample-Independent Thermal Transport Properties of $α$-RuCl$_3$.” ArXiv. https://doi.org/10.48550/ARXIV.2303.02098.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Zhang, Heda, Michael A McGuire, Andrew F May, Joy Chao, Qiang Zheng, Miaofang Chi, Brian C Sales, et al. 2023. “Stacking Disorder and Thermal Transport Properties of $α$-RuCl$_3$.” ArXiv. https://doi.org/10.48550/ARXIV.2303.03682.

20231.1.2.02 QSLM: Quantum Spin Liquid Materials

Czajka, Peter, Tong Gao, Max Hirschberger, Paula Lampen-Kelley, Arnab Banerjee, Nicholas Quirk, David G. Mandrus, Stephen E. Nagler, and N. P. Ong. 2022. “Planar Thermal Hall Effect of Topological Bosons in the Kitaev Magnet α-RuCl3.” Nature Materials 22 (1): 36–41. https://doi.org/10.1038/s41563-022-01397-w.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Miao, Hu, and Gábor B. Halász. 2022. “Structural Tweaking of 2D Quantum Magnetism.” Nature Materials 22 (1): 8–9. https://doi.org/10.1038/s41563-022-01445-5.

20221.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Murciano, Sara, Pablo Sala, Yue Liu, Roger S. K. Mong, and Jason Alicea. 2023. “Measurement-Altered Ising Quantum Criticality.” ArXiv. https://doi.org/10.48550/ARXIV.2302.04325.

20231.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Ko, Wonhee, Seoung-Hun Kang, Jason Lapano, Hao Chang, Jacob Teeter, Hoyeon Jeon, Matthew Brahlek, Mina Yoon, Robert G. Moore, and An-Ping Li. 2023. “Interplay between Topological States and Rashba States as Manifested on Surface Steps at Room Temperature.” arXiv. https://doi.org/10.48550/ARXIV.2301.06266.

20231.1.1.01 Topological materials prediction, synthesis, materials development

Woodworth, Timothy S., Carla Hermann-Avigliano, Kam Wai Clifford Chan, and Alberto M. Marino. 2022. “Transmission Estimation at the Quantum Cramér-Rao Bound with Macroscopic Quantum Light.” EPJ Quantum Technology 9 (1). https://doi.org/10.1140/epjqt/s40507-022-00154-x.

20221.3.3.03 Squeezed Readout of Quantum Sensors

Gowrishankar, Meenambika, Jerimiah Wright, Daniel Claudino, Phillip Lotshaw, Thien Nguyen, Alex McCaskey, and Travis Humble. 2022. “Numerical Simulations of Noisy Quantum Circuits for Computational Chemistry.” 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), September. https://doi.org/10.1109/qce53715.2022.00128.

20221.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum

Dasgupta, Samudra, and Travis S. Humble. 2022. “Adaptive Stabilization of Quantum Circuits Executed on Unstable Devices.” 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), September. https://doi.org/10.1109/qce53715.2022.00102.

20221.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Berg, Ewout van den, Sergey Bravyi, Jay M. Gambetta, Petar Jurcevic, Dmitri Maslov, and Kristan Temme. 2022. “Single-Shot Error Mitigation by Coherent Pauli Checks.” ArXiv. https://doi.org/10.48550/ARXIV.2212.03937.

20221.2.1.02 EMQD: Error mitigation on near‐term quantum devices

Zhang, Shengzhi, Sangyun Lee, Andrew J. Woods, William Peria, Sean M. Thomas, Roman Movshovich, Eric Brosha, et al. 2022. “Electronic and Magnetic Phase Diagrams of Kitaev Quantum Spin Liquid Candidate Na$_2$Co$_2$TeO$_6$.” arXiv. https://doi.org/10.48550/ARXIV.2212.03849.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Shimasaki, Toshihiko, Max Prichard, H. Esat Kondakci, Jared Pagett, Yifei Bai, Peter Dotti, Alec Cao, Tsung-Cheng Lu, Tarun Grover, and David M. Weld. 2022. “Anomalous Localization and Multifractality in a Kicked Quasicrystal.” arXiv. https://doi.org/10.48550/ARXIV.2203.09442.

20221.2.2.03 Kitaev Chain Quantum Simulator

Cerezo, M., Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, et al. 2021. “Variational Quantum Algorithms.” Nature Reviews Physics 3 (9): 625–44. https://doi.org/10.1038/s42254-021-00348-9.

20211.2.1.02 EMQD: Error mitigation on near‐term quantum devices, 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and

Cerezo, M., Guillaume Verdon, Hsin-Yuan Huang, Lukasz Cincio, and Patrick J. Coles. 2022. “Challenges and Opportunities in Quantum Machine Learning.” Nature Computational Science 2 (9): 567–76. https://doi.org/10.1038/s43588-022-00311-3.

20221.2.1.02 EMQD: Error mitigation on near‐term quantum devices

Caro, Matthias C., Hsin-Yuan Huang, M. Cerezo, Kunal Sharma, Andrew Sornborger, Lukasz Cincio, and Patrick J. Coles. 2022. “Generalization in Quantum Machine Learning from Few Training Data.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-32550-3.

20221.2.1.02 EMQD: Error mitigation on near‐term quantum devices, 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and

Ghosh, Sohitri, Matthew A. Feldman, Seongjin Hong, Claire Marvinney, Raphael Pooser, and Jacob M. Taylor. 2022. “Combining Quantum Noise Reduction Resources: a Practical Approach.” arXiv. https://doi.org/10.48550/ARXIV.2211.14460.

20221.3.3.03 Squeezed Readout of Quantum Sensors

Boltasseva, Alexandra, Vladimir M. Shalaev, and Blake Wilson. 2022. “Machine Learning for Photonics.” Edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. Active Photonic Platforms (APP) 2022, October. https://doi.org/10.1117/12.2633108.

20221.2.2.07 MLAO: Machine Learning Assisted Optimization of Quantum Device Design

Boltasseva, Alexandra. 2022. “Advancing Photonic Design with Machine Learning.” Edited by Kevin F. MacDonald, Anatoly V. Zayats, and Isabelle Staude. Metamaterials XIII, May. https://doi.org/10.1117/12.2624334.

20221.2.2.07 MLAO: Machine Learning Assisted Optimization of Quantum Device Design

Peana, Samuel, Omer Yesilyurt, Vahagn Mkhitaryan, Alexander Senichev, Zachariah O. Martin, Alexei S. Lagutchev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2022. “Large Scale Deterministic Creation of Single Photon Emitters in Silicon Nitride Nanopillars.” Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_qels.2022.fs4b.5.

20221.3.1.01 Hybrid Quantum Sensors

Kudyshev, Zhaxylyk A., Demid Sychev, Zachariah Martin, Simeon Bogdanov, Xiaohui Xu, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2021. “Machine Learning Assisted Quantum Super-Resolution Microscopy.” Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_at.2021.jth4c.5.

20211.2.2.07 MLAO: Machine Learning Assisted Optimization of Quantum Device Design

Xu, Xiaohui, Abhishek. B. Solanki, Demid Sychev, Xingyu Gao, Zachariah O. Martin, Alexander S. Baburin, Yong P. Chen, et al. 2022. “Plasmon-Enhanced Quantum Emission from Spin Defects in Two-Dimensional Hexagonal Boron Nitride.” Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_qels.2022.ff3c.3.

20221.3.1.01 Hybrid Quantum Sensors

Senichev, Alexander, Samuel Peana, Zachariah O. Martin, Omer Yesilyurt, Demid Sychev, Alexei S. Lagutchev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2022. “Monolithic Integration of Quantum Emitters with Silicon Nitride Photonic Platform.” Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_qels.2022.fw5f.6.

20221.3.1.01 Hybrid Quantum Sensors

Holmes, Zoe, Gopikrishnan Muraleedharan, Rolando D. Somma, Yigit Subasi, and Burak Şahinoğlu. 2022. “Quantum Algorithms from Fluctuation Theorems: Thermal-State Preparation.” Quantum 6 (October): 825. https://doi.org/10.22331/q-2022-10-06-825.

20221.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure

Gu, Shouzhen, Rolando D. Somma, and Burak Şahinoğlu. 2021. “Fast-Forwarding Quantum Evolution.” Quantum 5 (November): 577. https://doi.org/10.22331/q-2021-11-15-577.

20211.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure

Volkoff, T. J., and Yiğit Subaşı. 2022. “Ancilla-Free Continuous-Variable SWAP Test.” Quantum 6 (September): 800. https://doi.org/10.22331/q-2022-09-08-800.

20221.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure, 1.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and

Kang, Christopher, Nicholas P. Bauman, Sriram Krishnamoorthy, and Karol Kowalski. 2022. “Optimized Quantum Phase Estimation for Simulating Electronic States in Various Energy Regimes.” Journal of Chemical Theory and Computation 18 (11): 6567–76. https://doi.org/10.1021/acs.jctc.2c00577.

20221.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum

Weiland, A., F. B. Santos, J. D. Thompson, E. D. Bauer, S. M. Thomas, and P. F. S. Rosa. 2022. “Differences in the Resistive and Thermodynamic Properties of the Single Crystalline Chiral Superconductor Candidate SrPtAs.” arXiv. https://doi.org/10.48550/ARXIV.2210.12189.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Konakanchi, Shiva T., Jukka I. Väyrynen, Yong P. Chen, Pramey Upadhyaya, and Leonid P. Rokhinson. 2022. “A Platform for Braiding Majorana Modes with Magnetic Skyrmions.” arXiv. https://doi.org/10.48550/ARXIV.2210.10650.

20221.1.1.02 Controlling and Interacting with Anyons

Curtis, Jonathan B., Ankit Disa, Michael Fechner, Andrea Cavalleri, and Prineha Narang. 2022. “Dynamics of Photo-Induced Ferromagnetism in Oxides with Orbital Degeneracy.” ArXiv. https://doi.org/10.48550/ARXIV.2209.10567.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Bieniek, Maciej, Jukka I. Väyrynen, Gang Li, Titus Neupert, and Ronny Thomale. 2022. “Theory of Glide Symmetry Protected Helical Edge States in WTe$_{2}$ Monolayer.” ArXiv. https://doi.org/10.48550/ARXIV.2209.09169.

20221.1.1.02 Controlling and Interacting with Anyons

Scheie, A. O., Y. Kamiya, Hao Zhang, Sangyun Lee, A. J. Woods, A. M. Omanakuttan, M. G. Gonzalez, et al. 2022. “Non-Linear Magnons and Exchange Hamiltonians of Delafossite Proximate Quantum Spin Liquids.” arXiv. https://doi.org/10.48550/ARXIV.2207.14785.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Slagle, Kevin, and John Preskill. 2022. “Emergent Quantum Mechanics at the Boundary of a Local Classical Lattice Model.” ArXiv. https://doi.org/10.48550/ARXIV.2207.09465.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Klein, Julian, Zhigang Song, Benjamin Pingault, Florian Dirnberger, Hang Chi, Jonathan B. Curtis, Rami Dana, et al. 2022. “Sensing the Local Magnetic Environment through Optically Active Defects in a Layered Magnetic Semiconductor.” ArXiv. https://doi.org/10.48550/ARXIV.2207.02884.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Cohen, Liam A., Noah L. Samuelson, Taige Wang, Kai Klocke, Cian C. Reeves, Takashi Taniguchi, Kenji Watanabe, Sagar Vijay, Michael P. Zaletel, and Andrea F. Young. 2022. “Nanoscale Electrostatic Control in Ultra Clean Van Der Waals Heterostructures by Local Anodic Oxidation of Graphite Gates.” arXiv. https://doi.org/10.48550/ARXIV.2204.10296.

20221.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Cheng, Guanghui, Mohammad Mushfiqur Rahman, Andres Llacsahuanga Allcca, Avinash Rustagi, Xingtao Liu, Lina Liu, Lei Fu, et al. 2022. “Electrically Tunable Moiré Magnetism in Twisted Double Bilayer Antiferromagnets.” ArXiv. https://doi.org/10.48550/ARXIV.2204.03837.

20221.1.1.02 Controlling and Interacting with Anyons

Cheng, Guanghui, Mohammad Mushfiqur Rahman, Zhiping He, Andres Llacsahuanga Allcca, Avinash Rustagi, Kirstine Aggerbeck Stampe, Yanglin Zhu, et al. 2022. “Emergence of Electric-Field-Tunable Interfacial Ferromagnetism in 2D Antiferromagnet Heterostructures.” ArXiv. https://doi.org/10.48550/ARXIV.2203.13051.

20221.1.1.02 Controlling and Interacting with Anyons

Dolgirev, Pavel E., Marios H. Michael, Jonathan B. Curtis, Daniele Nicoletti, Michele Buzzi, Michael Fechner, Andrea Cavalleri, and Eugene Demler. 2021. “Theory for Anomalous Terahertz Emission in Striped Cuprate Superconductors.” ArXiv. https://doi.org/10.48550/ARXIV.2112.05772.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Nicoletti, D., M. Buzzi, M. Fechner, P. E. Dolgirev, M. H. Michael, J. B. Curtis, E. Demler, G. D. Gu, and A. Cavalleri. 2022. “Coherent Emission from Surface Josephson Plasmons in Striped Cuprates.” Proceedings of the National Academy of Sciences 119 (39). https://doi.org/10.1073/pnas.2211670119.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Nicoletti, D., M. Buzzi, M. Fechner, P. E. Dolgirev, M. H. Michael, J. B. Curtis, E. Demler, G. D. Gu, and A. Cavalleri. 2021. “Coherent Emission from Surface Josephson Plasmons in Striped Cuprates.” ArXiv. https://doi.org/10.48550/ARXIV.2111.14904.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Varnavides, Georgios, Yaxian Wang, Philip J. W. Moll, Polina Anikeeva, and Prineha Narang. 2021. “Finite-Size Effects of Electron Transport in PdCoO$_2$.” ArXiv. https://doi.org/10.48550/ARXIV.2106.00697.

20211.1.1.01 Topological materials prediction, synthesis, materials development, 1.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Liu, Chunxiao, Gábor B. Halász, and Leon Balents. 2021. “$Mathrm{U(1)}$ and $Mathbb{Z}_2$ Spin Liquids on the Pyrochlore Lattice.” ArXiv. https://doi.org/10.48550/ARXIV.2105.12726.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Allcca, Andres E. Llacsahuanga, Xing-Chen Pan, Ireneusz Miotkowski, Katsumi Tanigaki, and Yong P. Chen. 2022. “Gate-Tunable Anomalous Hall Effect in Stacked Van Der Waals Ferromagnetic Insulator - Topological Insulator Heterostructures.” ArXiv. https://doi.org/10.48550/ARXIV.2206.13045.

20221.1.1.02 Controlling and Interacting with Anyons

Girod, Clément, Callum R. Stevens, Andrew Huxley, Eric D. Bauer, Frederico B. Santos, Joe D. Thompson, Rafael M. Fernandes, et al. 2022. “Thermodynamic and Electrical Transport Properties of UTe$_2$ under Uniaxial Stress.” ArXiv. https://doi.org/10.48550/ARXIV.2205.04588.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Klocke, Kai, and Michael Buchhold. 2022. “Topological Order and Entanglement Dynamics in the Measurement-Only XZZX Quantum Code.” ArXiv. https://doi.org/10.48550/ARXIV.2204.08489.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Wang, Yaxian, Georgios Varnavides, Polina Anikeeva, Johannes Gooth, Claudia Felser, and Prineha Narang. 2021. “Generalized Design Principles for Hydrodynamic Electron Transport in Anisotropic Metals.” ArXiv. https://doi.org/10.48550/ARXIV.2109.00550.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Bøttcher, C. G. L., S. P. Harvey, S. Fallahi, G. C. Gardner, M. J. Manfra, U. Vool, S. D. Bartlett, and A. Yacoby. 2021. “Parametric Longitudinal Coupling between a High-Impedance Superconducting Resonator and a Semiconductor Quantum Dot Singlet-Triplet Spin Qubit.” ArXiv. https://doi.org/10.48550/ARXIV.2107.10269.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Avers, K. E., P. A. Maksimov, P. F. S. Rosa, S. M. Thomas, J. D. Thompson, W. P. Halperin, R. Movshovich, and A. L. Chernyshev. 2021. “Fingerprinting Triangular-Lattice Antiferromagnet by Excitation Gaps.” ArXiv. https://doi.org/10.48550/ARXIV.2102.02818.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

Mueller, Niklas, Joseph A. Carolan, Andrew Connelly, Zohreh Davoudi, Eugene F. Dumitrescu, and Kübra Yeter-Aydeniz. 2022. “Quantum Computation of Dynamical Quantum Phase Transitions and Entanglement Tomography in a Lattice Gauge Theory.” arXiv. https://doi.org/10.48550/ARXIV.2210.03089.

20221.2.1.02 EMQD: Error mitigation on near‐term quantum devices

Pandey, Tushar, and Eugene Dumitrescu. 2022. “Topological Characterization with a Twist, Condensation, and Reflection.” arXiv. https://doi.org/10.48550/ARXIV.2209.11126.

20221.2.1.02 EMQD: Error mitigation on near‐term quantum devices

Tian, Jifa, Cüneyt Şahin, Ireneusz Miotkowski, Michael E. Flatté, and Yong P. Chen. 2021. “Opposite Current-Induced Spin Polarizations in Bulk-Metallic Bi2Se3 and Bulk-Insulating Bi2Te2Se Topological Insulator Thin Flakes.” Physical Review B 103 (3). https://doi.org/10.1103/physrevb.103.035412.

20211.1.1.02 Controlling and Interacting with Anyons

Wu, Anbang, Yufei Ding, and Ang Li. 2022. “CollComm: Enabling Efficient Collective Quantum Communication Based on EPR Buffering.” arXiv. https://doi.org/10.48550/ARXIV.2208.06724.

20221.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Fang, Bo, M. Yusuf Ozkaya, Ang Li, Umit V. Catalyurek, and Sriram Krishnamoorthy. 2022. “Efficient Hierarchical State Vector Simulation of Quantum Circuits via Acyclic Graph Partitioning.” 2022 IEEE International Conference on Cluster Computing (CLUSTER), September. https://doi.org/10.1109/cluster51413.2022.00041.

20221.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Zheng, Muqing, Ang Li, Tamás Terlaky, and Xiu Yang. 2023. “A Bayesian Approach for Characterizing and Mitigating Gate and Measurement Errors.” ACM Transactions on Quantum Computing 4 (2): 1–21. https://doi.org/10.1145/3563397.

20221.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Li, Guangjie, Elio J. König, and Jukka I. Väyrynen. 2022. “Topological Symplectic Kondo Effect.” ArXiv. https://doi.org/10.48550/ARXIV.2210.16614.

20221.1.1.02 Controlling and Interacting with Anyons

Dupont, Maxime, and Joel E. Moore. 2022. “Quantum Criticality Using a Superconducting Quantum Processor.” Physical Review B 106 (4). https://doi.org/10.1103/physrevb.106.l041109.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Shumiya, Nana, Md Shafayat Hossain, Jia-Xin Yin, Zhiwei Wang, Maksim Litskevich, Chiho Yoon, Yongkai Li, et al. 2022. “Evidence of a Room-Temperature Quantum Spin Hall Edge State in a Higher-Order Topological Insulator.” Nature Materials 21 (10): 1111–15. https://doi.org/10.1038/s41563-022-01304-3.

20221.1.1.02 Controlling and Interacting with Anyons

Shumiya, Nana, Jia-Xin Yin, Guoqing Chang, Meng Yang, Sougata Mardanya, Tay-Rong Chang, Hsin Lin, et al. 2022. “Evidence for Electronic Signature of a Magnetic Transition in the Topological Magnet HoSbTe.” Physical Review B 106 (3). https://doi.org/10.1103/physrevb.106.035151.

20221.1.1.02 Controlling and Interacting with Anyons

Xie, Yaofeng, Yongkai Li, Philippe Bourges, Alexandre Ivanov, Zijin Ye, Jia-Xin Yin, M. Zahid Hasan, et al. 2022. “Electron-Phonon Coupling in the Charge Density Wave State of CsV3Sb5.” Physical Review B 105 (14). https://doi.org/10.1103/physrevb.105.l140501.

20221.1.1.02 Controlling and Interacting with Anyons

Yin, Jia-Xin, Yu-Xiao Jiang, Xiaokun Teng, Md. Shafayat Hossain, Sougata Mardanya, Tay-Rong Chang, Zijin Ye, et al. 2022. “Discovery of Charge Order and Corresponding Edge State in Kagome Magnet FeGe.” Physical Review Letters 129 (16). https://doi.org/10.1103/physrevlett.129.166401.

20221.1.1.02 Controlling and Interacting with Anyons

Samarakoon, Anjana M., André Sokolowski, Bastian Klemke, Ralf Feyerherm, Michael Meissner, R. A. Borzi, Feng Ye, et al. 2022. “Structural Magnetic Glassiness in the Spin Ice Dy2Ti2O7.” Physical Review Research 4 (3). https://doi.org/10.1103/physrevresearch.4.033159.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Scheie, A., P. Laurell, B. Lake, S. E. Nagler, M. B. Stone, J-S Caux, and D. A. Tennant. 2022. “Quantum Wake Dynamics in Heisenberg Antiferromagnetic Chains.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-33571-8.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Laurell, Pontus, Allen Scheie, D. Alan Tennant, Satoshi Okamoto, Gonzalo Alvarez, and Elbio Dagotto. 2022. “Magnetic Excitations, Nonclassicality, and Quantum Wake Spin Dynamics in the Hubbard Chain.” Physical Review B 106 (8). https://doi.org/10.1103/physrevb.106.085110.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Zhang, Qiang, Yuanpeng Zhang, Masaaki Matsuda, Vasile Ovidiu Garlea, Jiaqiang Yan, Michael A. McGuire, D. Alan Tennant, and Satoshi Okamoto. 2022. “Hidden Local Symmetry Breaking in a Kagome-Lattice Magnetic Weyl Semimetal.” Journal of the American Chemical Society 144 (31): 14339–50. https://doi.org/10.1021/jacs.2c05665.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Wang, Qing Hua, Amilcar Bedoya-Pinto, Mark Blei, Avalon H. Dismukes, Assaf Hamo, Sarah Jenkins, Maciej Koperski, et al. 2022. “The Magnetic Genome of Two-Dimensional van Der Waals Materials.” ACS Nano 16 (5): 6960–7079. https://doi.org/10.1021/acsnano.1c09150.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Biswas, Somnath, Ioannis Petrides, Robert J. Kirby, Catrina Oberg, Sebastian Klemenz, Caroline Weinberg, Austin Ferrenti, Prineha Narang, Leslie M. Schoop, and Gregory D. Scholes. 2022. “Photoinduced Band Renormalization Effects in the Topological Nodal-Line Semimetal ZrSiS.” Physical Review B 106 (13). https://doi.org/10.1103/physrevb.106.134303.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Klein, J., T. Pham, J. D. Thomsen, J. B. Curtis, T. Denneulin, M. Lorke, M. Florian, et al. 2022. “Control of Structure and Spin Texture in the van Der Waals Layered Magnet CrSBr.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-32737-8.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Slagle, Kevin, Yue Liu, David Aasen, Hannes Pichler, Roger S. K. Mong, Xie Chen, Manuel Endres, and Jason Alicea. 2022. “Quantum Spin Liquids Bootstrapped from Ising Criticality in Rydberg Arrays.” Physical Review B 106 (11). https://doi.org/10.1103/physrevb.106.115122.

20221.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Weiland, A, S M Thomas, and P F S Rosa. 2022. “Investigating the Limits of Superconductivity in UTe2.” Journal of Physics: Materials 5 (4): 044001. https://doi.org/10.1088/2515-7639/ac8ba9.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Sbierski, Björn, Max Geier, An-Ping Li, Matthew Brahlek, Robert G. Moore, and Joel E. Moore. 2022. “Identifying Majorana Vortex Modes via Nonlocal Transport.” Physical Review B 106 (3). https://doi.org/10.1103/physrevb.106.035413.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Bøttcher, C. G. L., S. P. Harvey, S. Fallahi, G. C. Gardner, M. J. Manfra, U. Vool, S. D. Bartlett, and A. Yacoby. 2022. “Parametric Longitudinal Coupling between a High-Impedance Superconducting Resonator and a Semiconductor Quantum Dot Singlet-Triplet Spin Qubit.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-32236-w.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

McGuire, Michael A., Yun-Yi Pai, Matthew Brahlek, Satoshi Okamoto, and R. G. Moore. 2022. “Electronic and Topological Properties of the van Der Waals Layered Superconductor PtTe.” Physical Review B 105 (18). https://doi.org/10.1103/physrevb.105.184514.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Liu, Yue, Kevin Slagle, Kenneth S. Burch, and Jason Alicea. 2022. “Dynamical Anyon Generation in Kitaev Honeycomb Non-Abelian Spin Liquids.” Physical Review Letters 129 (3). https://doi.org/10.1103/physrevlett.129.037201.

20221.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Mishra, S., Y. Liu, E. D. Bauer, F. Ronning, and S. M. Thomas. 2022. “Anisotropic Magnetotransport Properties of the Heavy-Fermion Superconductor CeRh2As2.” Physical Review B 106 (14). https://doi.org/10.1103/physrevb.106.l140502.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Curtis, Jonathan B., Nicholas R. Poniatowski, Amir Yacoby, and Prineha Narang. 2022. “Proximity-Induced Collective Modes in an Unconventional Superconductor Heterostructure.” Physical Review B 106 (6). https://doi.org/10.1103/physrevb.106.064508.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Wang, Yaxian, Georgios Varnavides, Ravishankar Sundararaman, Polina Anikeeva, Johannes Gooth, Claudia Felser, and Prineha Narang. 2022. “Generalized Design Principles for Hydrodynamic Electron Transport in Anisotropic Metals.” Physical Review Materials 6 (8). https://doi.org/10.1103/physrevmaterials.6.083802.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Qiu, Ziwei, Assaf Hamo, Uri Vool, Tony X. Zhou, and Amir Yacoby. 2022. “Nanoscale Electric Field Imaging with an Ambient Scanning Quantum Sensor Microscope.” Npj Quantum Information 8 (1). https://doi.org/10.1038/s41534-022-00622-3.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Park, Sohee, Young-Kyun Kwon, Mina Yoon, and Changwon Park. 2022. “Role of Sr Doping and External Strain on Relieving Bottleneck of Oxygen Diffusion in La2−xSrxCuO4−δ.” Scientific Reports 12 (1). https://doi.org/10.1038/s41598-022-17376-9.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Llacsahuanga Allcca, Andres E., Xing-Chen Pan, Ireneusz Miotkowski, Katsumi Tanigaki, and Yong P. Chen. 2022. “Gate-Tunable Anomalous Hall Effect in Stacked van Der Waals Ferromagnetic Insulator–Topological Insulator Heterostructures.” Nano Letters 22 (20): 8130–36. https://doi.org/10.1021/acs.nanolett.2c02571.

20221.1.1.02 Controlling and Interacting with Anyons

Girod, Clément, Callum R. Stevens, Andrew Huxley, Eric D. Bauer, Frederico B. Santos, Joe D. Thompson, Rafael M. Fernandes, et al. 2022. “Thermodynamic and Electrical Transport Properties of UTe2 under Uniaxial Stress.” Physical Review B 106 (12). https://doi.org/10.1103/physrevb.106.l121101.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Klocke, Kai, and Michael Buchhold. 2022. “Topological Order and Entanglement Dynamics in the Measurement-Only XZZX Quantum Code.” Physical Review B 106 (10). https://doi.org/10.1103/physrevb.106.104307.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Lapano, Jason, Yun-Yi Pai, Alessandro R. Mazza, Jie Zhang, Tamara Isaacs-Smith, Patrick Gemperline, Lizhi Zhang, et al. 2021. “Self-Regulated Growth of Candidate Topological Superconducting Parkerite by Molecular Beam Epitaxy.” APL Materials 9 (10). https://doi.org/10.1063/5.0064746.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Moore, Robert G., Tyler Smith, Xiong Yao, Yun-Yi Pai, Michael Chilcote, Hu Miao, Satoshi Okamoto, Seongshik Oh, and Matthew Brahlek. 2022. “Monolayer Superconductivity and Tunable Topological Electronic Structure at the Fe(Te,Se)/Bi2Te3 Interface.” ArXiv. https://doi.org/10.48550/ARXIV.2209.06646.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Khalid, Bilal, Shree Hari Sureshbabu, Arnab Banerjee, and Sabre Kais. 2022. “Finite-Size Scaling on a Digital Quantum Simulator Using Quantum Restricted Boltzmann Machine.” Frontiers in Physics 10 (May). https://doi.org/10.3389/fphy.2022.915863.

20221.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Mishra, Sanu, Yu Liu, Eric D. Bauer, Filip Ronning, and Sean. M. Thomas. 2022. “Anisotropic Magnetotransport Properties of the Heavy-Fermion Superconductor CeRh$_2$As$_2$.” ArXiv. https://doi.org/10.48550/ARXIV.2207.14773.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Dasgupta, Samudra, and Travis S. Humble. 2022. “Characterizing the Reproducibility of Noisy Quantum Circuits.” Entropy 24 (2): 244. https://doi.org/10.3390/e24020244.

20221.6 QSC Management

Li, Guangjie, Yuval Oreg, and Jukka I. Väyrynen. 2022. “Multichannel Topological Kondo Effect.” ArXiv. https://doi.org/10.48550/ARXIV.2207.10105.

20221.1.1.02 Controlling and Interacting with Anyons

Sajjan, Manas, Junxu Li, Raja Selvarajan, Shree Hari Sureshbabu, Sumit Suresh Kale, Rishabh Gupta, Vinit Singh, and Sabre Kais. 2022. “Quantum Machine Learning for Chemistry and Physics.” Chemical Society Reviews 51 (15): 6475–6573. https://doi.org/10.1039/d2cs00203e.

20221.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Li, Shaozhi, and Satoshi Okamoto. 2022. “Thermal Hall Effect in the Kitaev-Heisenberg System with Spin-Phonon Coupling.” Physical Review B 106 (2). https://doi.org/10.1103/physrevb.106.024413.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Fang, Bo, M. Yusuf Özkaya, Ang Li, Ümit V. Çatalyürek, and Sriram Krishnamoorthy. 2022. “Efficient Hierarchical State Vector Simulation of Quantum Circuits via Acyclic Graph Partitioning.” arXiv. https://doi.org/10.48550/ARXIV.2205.06973.

20221.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Li, Ang, Bo Fang, Christopher Granade, Guen Prawiroatmodjo, Bettina Heim, Martin Roetteler, and Sriram Krishnamoorthy. 2021. “SV-Sim.” Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, November. https://doi.org/10.1145/3458817.3476169.

20211.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Jha, Akshat A., Eliana L. Stoyanoff, Guga Khundzakishvili, Paul Kairys, Hayato Ushijima-Mwesigwa, and Arnab Banerjee. 2021. “Digital Annealing Route to Complex Magnetic Phase Discovery.” 2021 International Conference on Rebooting Computing (ICRC), November. https://doi.org/10.1109/icrc53822.2021.00027.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

Rajagopal Iyer, Vasudevan, Scott T. Retterer, Jason Fowlkes, Stephen Jesse, Alexander A. Puretzky, Jordan A. Hachtel, Philip D. Rack, and Benjamin J. Lawrie. 2021. “In Situ Electron-Beam Processing and Cathodoluminescence Microscopy for Quantum Nanophotonics.” Edited by Andrei V. Kabashin, Jan J. Dubowski, David B. Geohegan, and Maria Farsari. Synthesis and Photonics of Nanoscale Materials XVIII, March. https://doi.org/10.1117/12.2578528.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Lawrie, Benjamin J., Matthew Feldman, Claire E. Marvinney, and Yun-Yi Pai. 2021. “Free-Space Confocal Magneto-Optical Spectroscopies at MilliKelvin Temperatures.” Edited by Mario Agio, Cesare Soci, and Matthew T. Sheldon. Quantum Nanophotonic Materials, Devices, and Systems 2021, August. https://doi.org/10.1117/12.2595780.

20211.3.1.01 Hybrid Quantum Sensors

Slagle, Kevin. 2021. “Testing Quantum Mechanics Using Noisy Quantum Computers.” arXiv. https://doi.org/10.48550/ARXIV.2108.02201.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Slagle, Kevin. 2021. “Fast Tensor Disentangling Algorithm.” SciPost Physics 11 (3). https://doi.org/10.21468/scipostphys.11.3.056.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Zhang, Shang-Shun, Gábor B. Halász, and Cristian D. Batista. 2021. “Theory of the Kitaev Model in a [111] Magnetic Field.” ArXiv. https://doi.org/10.48550/ARXIV.2104.02892.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Wang, Samson, Piotr Czarnik, Andrew Arrasmith, M. Cerezo, Lukasz Cincio, and Patrick J. Coles. 2021. “Can Error Mitigation Improve Trainability of Noisy Variational Quantum Algorithms?” ArXiv. https://doi.org/10.48550/ARXIV.2109.01051.

20211.2.1.02 EMQD: Error mitigation on near‐term quantum devices

Thomson, Alex, Ina Sorensen, Stevan Nadj-Perge, and Jason Alicea. 2021. “Gate-Defined Wires in Twisted Bilayer Graphene: from Electrical Detection of Inter-Valley Coherence to Internally Engineered Majorana Modes.” ArXiv. https://doi.org/10.48550/ARXIV.2105.02891.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Slagle, Kevin, David Aasen, Hannes Pichler, Roger S. K. Mong, Paul Fendley, Xie Chen, Manuel Endres, and Jason Alicea. 2021. “Microscopic Characterization of Ising Conformal Field Theory in Rydberg Chains.” Physical Review B 104 (23). https://doi.org/10.1103/physrevb.104.235109.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Scheie, Allen, Pontus Laurell, Paul A. McClarty, Garrett E. Granroth, Matt B. Stone, Roderich Moessner, and Stephen E. Nagler. 2021. “Dirac Magnons, Nodal Lines, and Nodal Plane in Elemental Gadolinium.” ArXiv. https://doi.org/10.48550/ARXIV.2107.11372.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

Scheie, A. O., E. A. Ghioldi, J. Xing, J. A. M. Paddison, N. E. Sherman, M. Dupont, L. D. Sanjeewa, et al. 2021. “Witnessing Quantum Criticality and Entanglement in the Triangular Antiferromagnet KYbSe$_2$.” ArXiv. https://doi.org/10.48550/ARXIV.2109.11527.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Samarakoon, Anjana M., Andre Sokolowski, Bastian Klemke, Ralf Feyerherm, Michael Meissner, R. A. Borzi, Feng Ye, et al. 2021. “Structural Magnetic Glassiness in Spin Ice Dy$_2$Ti$_2$O$_7$.” ArXiv. https://doi.org/10.48550/ARXIV.2107.12305.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

Sajjan, Manas, Junxu Li, Raja Selvarajan, Shree Hari Sureshbabu, Sumit Suresh Kale, Rishabh Gupta, Vinit Singh, and Sabre Kais. 2021. “Quantum Machine Learning for Chemistry and Physics.” ArXiv. https://doi.org/10.48550/ARXIV.2111.00851.

20211.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Rosa, P. F. S., A. Weiland, S. S. Fender, B. L. Scott, F. Ronning, J. D. Thompson, E. D. Bauer, and S. M. Thomas. 2021. “Single-Component Superconducting State in UTe2 at 2 K.” ArXiv. https://doi.org/10.48550/ARXIV.2110.06200.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Myerson-Jain, Nayan E., Stephen Yan, David Weld, and Cenke Xu. 2021. “Construction of Fractal Order and Phase Transition with Rydberg Atoms.” ArXiv. https://doi.org/10.48550/ARXIV.2108.07765.

20211.2.2.03 Kitaev Chain Quantum Simulator

Mu, Sai, Kiranmayi D. Dixit, Xiaoping Wang, Douglas L. Abernathy, Huibo Cao, Stephen E. Nagler, Jiaqiang Yan, et al. 2022. “Role of the Third Dimension in Searching for Majorana Fermions in α−RuCl3 via Phonons.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.013067.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Liu, Yue, Kevin Slagle, Kenneth S. Burch, and Jason Alicea. 2021. “Dynamical Anyon Generation in Kitaev Honeycomb Non-Abelian Spin Liquids.” ArXiv. https://doi.org/10.48550/ARXIV.2111.09325.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Klocke, Kai, Joel E. Moore, Jason Alicea, and Gábor B. Halász. 2021. “Thermal Anyon Interferometry in Phonon-Coupled Kitaev Spin Liquids.” ArXiv. https://doi.org/10.48550/ARXIV.2105.05869.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Caro, Matthias C., Hsin-Yuan Huang, M. Cerezo, Kunal Sharma, Andrew Sornborger, Lukasz Cincio, and Patrick J. Coles. 2021. “Generalization in Quantum Machine Learning from Few Training Data.” ArXiv. https://doi.org/10.48550/ARXIV.2111.05292.

20211.2.1.02 EMQD: Error mitigation on near‐term quantum devices

Bultrini, Daniel, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, M. Cerezo, Patrick J. Coles, and Lukasz Cincio. 2021. “Unifying and Benchmarking State-of-the-Art Quantum Error Mitigation Techniques.” ArXiv. https://doi.org/10.48550/ARXIV.2107.13470.

20211.2.1.02 EMQD: Error mitigation on near‐term quantum devices

Stefanazzi, Leandro, Ken Treptow, Neal Wilcer, Chris Stoughton, Salvatore Montella, Collin Bradford, Gustavo Cancelo, et al. 2021. “The QICK (Quantum Instrumentation Control Kit): Readout and Control for Qubits and Detectors.” arXiv. https://doi.org/10.48550/ARXIV.2110.00557.

20211.3.3.02 High Throughput Cryogenic Sensor Arrays

Holmes, Zoe, Gopikrishnan Muraleedharan, Rolando D. Somma, Yigit Subasi, and Burak Şahinoğlu. 2022. “Quantum Algorithms from Fluctuation Theorems: Thermal-State Preparation.” ArXiv. https://doi.org/10.48550/ARXIV.2203.08882.

20221.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Shimasaki, Toshihiko, Max Prichard, H. Esat Kondakci, Jared Pagett, Yifei Bai, Peter Dotti, Alec Cao, Tsung-Cheng Lu, Tarun Grover, and David M. Weld. 2022. “Anomalous Localization and Multifractality in a Kicked Quasicrystal.” arXiv. https://doi.org/10.48550/ARXIV.2203.09442.

20221.2.2.03 Kitaev Chain Quantum Simulator

Khalid, Bilal, Shree Hari Sureshbabu, Arnab Banerjee, and Sabre Kais. 2022. “Finite-Size Scaling on a Digital Quantum Simulator Using Quantum Restricted Boltzmann Machine.” arXiv. https://doi.org/10.48550/ARXIV.2202.00112.

20221.2.1.04 NASL: Towards non‐abelian spin liquids characterization on quantum hard

Martin, Joshua D., A. Roggero, Huaiyu Duan, J. Carlson, and V. Cirigliano. 2021. “Classical and Quantum Evolution in a Simple Coherent Neutrino Problem.” ArXiv. https://doi.org/10.48550/ARXIV.2112.12686.

20211.2.2.05 Strong interactions and dynamics: from quarks to nuclei

Poniatowski, Nicholas R., Jonathan B. Curtis, Charlotte G. L. Bøttcher, Victor M. Galitski, Amir Yacoby, Prineha Narang, and Eugene Demler. 2021. “Surface Cooper Pair Spin Waves in Triplet Superconductors.” ArXiv. https://doi.org/10.48550/ARXIV.2112.12146.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Curtis, Jonathan B., Nicholas R. Poniatowski, Amir Yacoby, and Prineha Narang. 2022. “Proximity-Induced Collective Modes in an Unconventional Superconductor Heterostructure.” ArXiv. https://doi.org/10.48550/ARXIV.2201.04635.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Czajka, Peter, Tong Gao, Max Hirschberger, Paula Lampen-Kelley, Arnab Banerjee, Nicholas Quirk, David G. Mandrus, Stephen E. Nagler, and N. P. Ong. 2022. “The Planar Thermal Hall Conductivity in the Kitaev Magnet α-RuCl3.” ArXiv. https://doi.org/10.48550/ARXIV.2201.07873.

20221.2.1.04 NASL: Towards non‐abelian spin liquids characterization on quantum hard

Li, Haoxiang, A. Said, J. Q. Yan, D. M. Mandrus, H. N. Lee, S. Okamoto, Gábor B. Halász, and H. Miao. 2021. “Divergence of Majorana-Phonon Scattering in Kitaev Quantum Spin Liquid.” arXiv. https://doi.org/10.48550/ARXIV.2112.02015.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

Blanco, Carlos, Bahaa Elshimy, Rafael F. Lang, and Robert Orlando. 2021. “Models of Ultra-Heavy Dark Matter Visible to Macroscopic Mechanical Sensing Arrays.” ArXiv. https://doi.org/10.48550/ARXIV.2112.14784.

20211.3.3.03 Squeezed Readout of Quantum Sensors

Volkoff, T. J., and Yiğit Subaşı. 2022. “Ancilla-Free Continuous-Variable SWAP Test.” ArXiv. https://doi.org/10.48550/ARXIV.2202.09923.

20221.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and

Lefrançois, É., G. Grissonnanche, J. Baglo, P. Lampen-Kelley, J. Yan, C. Balz, D. Mandrus, et al. 2021. “Evidence of a Phonon Hall Effect in the Kitaev Spin Liquid Candidate $α$-RuCl$_3$.” ArXiv. https://doi.org/10.48550/ARXIV.2111.05493.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

Zhao, Huan, Michael T. Pettes, Yu Zheng, and Han Htoon. 2021. “Site-Controlled Telecom-Wavelength Single-Photon Emitters in Atomically-Thin MoTe2.” Nature Communications 12 (1). https://doi.org/10.1038/s41467-021-27033-w.

20211.3.1.01 Hybrid Quantum Sensors

Yesilyurt, Omer, Zhaxylyk A. Kudyshev, Alexandra Boltasseva, Vladimir M. Shalaev, and Alexander V. Kildishev. 2021. “Efficient Topology-Optimized Couplers for On-Chip Single-Photon Sources.” ACS Photonics 8 (10): 3061–68. https://doi.org/10.1021/acsphotonics.1c01070.

20211.3.1.01 Hybrid Quantum Sensors

Wang, Derek S., Michael Haas, and Prineha Narang. 2021. “Quantum Interfaces to the Nanoscale.” ACS Nano 15 (5): 7879–88. https://doi.org/10.1021/acsnano.1c01255.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Tian, Jifa, Luis A Jauregui, C D Wilen, Albert F Rigosi, David B Newell, R McDermott, and Yong P Chen. 2021. “A Josephson Junction with H-BN Tunnel Barrier: Observation of Low Critical Current Noise.” Journal of Physics: Condensed Matter 33 (49): 495301. https://doi.org/10.1088/1361-648x/ac268f.

20211.2.2.04 QSTQM‐BEC: Quantum simulation of topological quantum materials and fiel

Senichev, Alexander, Samuel Peana, Zachariah O. Martin, Demid Sychev, Xiaohui Xu, Zhaxylyk Kudyshev, Alexei S. Lagutchev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2021. “Room-Temperature Single-Photon Emitters in Silicon Nitride.” Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_qels.2021.fw4i.6.

20211.3.1.01 Hybrid Quantum Sensors

Selvarajan, Raja, Vivek Dixit, Xingshan Cui, Travis S. Humble, and Sabre Kais. 2021. “Prime Factorization Using Quantum Variational Imaginary Time Evolution.” Scientific Reports 11 (1). https://doi.org/10.1038/s41598-021-00339-x.

20211.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Sajjan, Manas, Shree Hari Sureshbabu, and Sabre Kais. 2021. “Quantum Machine-Learning for Eigenstate Filtration in Two-Dimensional Materials.” Journal of the American Chemical Society 143 (44): 18426–45. https://doi.org/10.1021/jacs.1c06246.

20211.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Mazza, Alessandro R., Xingyao Gao, Daniel J. Rossi, Brianna L. Musico, Tyler W. Valentine, Zachary Kennedy, Jie Zhang, et al. 2021. “Searching for Superconductivity in High Entropy Oxide Ruddlesden–Popper Cuprate Films.” Journal of Vacuum Science & Technology A 40 (1). https://doi.org/10.1116/6.0001441.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Multer, Daniel, Jia-Xin Yin, Songtian S. Zhang, Hao Zheng, Tay-Rong Chang, Guang Bian, Raman Sankar, and M. Zahid Hasan. 2021. “Robust Topological State against Magnetic Impurities Observed in the Superconductor PbTaSe2.” Physical Review B 104 (7). https://doi.org/10.1103/physrevb.104.075145.

20211.1.1.02 Controlling and Interacting with Anyons

Pai, Yun‐Yi, Claire E. Marvinney, Chengyun Hua, Raphael C. Pooser, and Benjamin J. Lawrie. 2021. “Magneto‐Optical Sensing Beyond the Shot Noise Limit.” Advanced Quantum Technologies 5 (1). https://doi.org/10.1002/qute.202100107.

20211.3.3.03 Squeezed Readout of Quantum Sensors

Kayyalha, Morteza, Leonid P. Rokhinson, and Yong P. Chen. 2021. “Electrical and Superconducting Transport in Topological Insulator Nanoribbons.” Frontiers of Nanoscience, 241–64. https://doi.org/10.1016/b978-0-12-822083-2.00004-6.

20211.1.1.02 Controlling and Interacting with Anyons

Gao, Xingyu, Boyang Jiang, Andres E. Llacsahuanga Allcca, Kunhong Shen, Mohammad A. Sadi, Abhishek B. Solanki, Peng Ju, et al. 2021. “High-Contrast Plasmonic-Enhanced Shallow Spin Defects in Hexagonal Boron Nitride for Quantum Sensing.” Nano Letters 21 (18): 7708–14. https://doi.org/10.1021/acs.nanolett.1c02495.

20211.1.1.02 Controlling and Interacting with Anyons

Varnavides, Georgios, Yaxian Wang, Philip J. W. Moll, Polina Anikeeva, and Prineha Narang. 2022. “Mesoscopic Finite-Size Effects of Unconventional Electron Transport in PdCoO2.” Physical Review Materials 6 (4). https://doi.org/10.1103/physrevmaterials.6.045002.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Wang, Yiping, Ioannis Petrides, Grant McNamara, Md Mofazzel Hosen, Shiming Lei, Yueh-Chun Wu, James L. Hart, et al. 2022. “Axial Higgs Mode Detected by Quantum Pathway Interference in RTe3.” Nature 606 (7916): 896–901. https://doi.org/10.1038/s41586-022-04746-6.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Lefrançois, É., G. Grissonnanche, J. Baglo, P. Lampen-Kelley, J.-Q. Yan, C. Balz, D. Mandrus, et al. 2022. “Evidence of a Phonon Hall Effect in the Kitaev Spin Liquid Candidate α−RuCl3.” Physical Review X 12 (2). https://doi.org/10.1103/physrevx.12.021025.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Belopolski, Ilya, Guoqing Chang, Tyler A. Cochran, Zi-Jia Cheng, Xian P. Yang, Cole Hugelmeyer, Kaustuv Manna, et al. 2022. “Observation of a Linked-Loop Quantum State in a Topological Magnet.” Nature 604 (7907): 647–52. https://doi.org/10.1038/s41586-022-04512-8.

20221.1.1.02 Controlling and Interacting with Anyons

Mazza, Alessandro R., Jason Lapano, Harry M. MeyerIII, Christopher T. Nelson, Tyler Smith, Yun‐Yi Pai, Kyle Noordhoek, et al. 2022. “Surface‐Driven Evolution of the Anomalous Hall Effect in Magnetic Topological Insulator MnBi2Te4 Thin Films.” Advanced Functional Materials 32 (28). https://doi.org/10.1002/adfm.202202234.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Park, Changwon, and Mina Yoon. 2022. “Topography Inversion in Scanning Tunneling Microscopy of Single-Atom-Thick Materials from Penetrating Substrate States.” Scientific Reports 12 (1). https://doi.org/10.1038/s41598-022-10870-0.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Curtis, Jonathan B., Ioannis Petrides, and Prineha Narang. 2022. “Finite-Momentum Instability of Dynamical Axion Insulator.” ArXiv. https://doi.org/10.48550/ARXIV.2206.04711.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Biswas, Somnath, Ioannis Petrides, Robert J. Kirby, Catrina Oberg, Sebastian Klemenz, Caroline Weinberg, Austin Ferrenti, Prineha Narang, Leslie Schoop, and Gregory D. Scholes. 2022. “Photoinduced Band Renormalization Effects in ZrSiS Topological Nodal-Line Semimetal.” arXiv. https://doi.org/10.48550/ARXIV.2206.04654.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Welakuh, Davis M., and Prineha Narang. 2021. “Transition from Lorentz to Fano Spectral Line Shapes in Non-Relativistic Quantum Electrodynamics.” arXiv. https://doi.org/10.48550/ARXIV.2112.05114.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Welakuh, Davis M., and Prineha Narang. 2022. “Nonlinear Optical Processes in Centrosymmetric Systems by Strong-Coupling-Induced Symmetry Breaking.” arXiv. https://doi.org/10.48550/ARXIV.2202.11117.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Welakuh, Davis M., and Prineha Narang. 2022. “Tunable Nonlinearity and Efficient Harmonic Generation from a Strongly Coupled Light-Matter System.” arXiv. https://doi.org/10.48550/ARXIV.2203.00691.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Idzuchi, H., M. Kimata, S. Okamoto, P. Laurell, N. Mohanta, M. Cothrine, S. E. Nagler, D. Mandrus, A. Banerjee, and Y. P. Chen. 2022. “Spin Sensitive Transport in a Spin Liquid Material: Revealing a Robustness of Spin Anisotropy.” arXiv. https://doi.org/10.48550/ARXIV.2204.03158.

20221.1.1.02 Controlling and Interacting with Anyons, 1.1.2.02 QSLM: Quantum Spin Liquid Materials

Laurell, Pontus, Allen Scheie, D. Alan Tennant, Satoshi Okamoto, Gonzalo Alvarez, and Elbio Dagotto. 2022. “Magnetic Excitations, Non-Classicality and Quantum Wake Spin Dynamics in the Hubbard Chain.” ArXiv. https://doi.org/10.48550/ARXIV.2203.06332.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Chirolli, Luca, Norman Y. Yao, and Joel E. Moore. 2022. “SWAP Gate between a Majorana Qubit and a Parity-Protected Superconducting Qubit.” ArXiv. https://doi.org/10.48550/ARXIV.2205.01410.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Papaj, Michał, and Joel E. Moore. 2022. “Current-Enabled Optical Conductivity of Superconductors.” ArXiv. https://doi.org/10.48550/ARXIV.2203.15801.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Guo, Yucheng, Mason Klemm, Ji Seop Oh, Yaofeng Xie, Bing-Hua Lei, Sergey Gorovikov, Tor Pedersen, et al. 2022. “Spectral Evidence for Unidirectional Charge Density Wave in Detwinned BaNi$_2$As$_2$.” arXiv. https://doi.org/10.48550/ARXIV.2205.14339.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Wang, Yiping, Ioannis Petrides, Grant McNamara, Md Mofazzel Hosen, Shiming Lei, Yueh-Chun Wu, James L. Hart, et al. 2021. “Axial Higgs Mode Detected by Quantum Pathway Interference in RTe3.” ArXiv. https://doi.org/10.48550/ARXIV.2112.02454.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Zhang, Qiang, Yuanpeng Zhang, Masaaki Matsuda, Vasile O Garlea, Jiaqiang Yan, Michael A. McGuire, D. Alan Tennant, and Satoshi Okamoto. 2022. “Hidden Local Symmetry Breaking in a Kagome-Lattice Magnetic Weyl Semimetal.” ArXiv. https://doi.org/10.48550/ARXIV.2202.08428.

20221.1.1 Topological Electronic Materials, 1.1.1.01 Topological materials prediction, synthesis, materials development

Scheie, Allen, Pontus Laurell, Bella Lake, Stephen E. Nagler, Matthew B. Stone, Jean-Sebastian Caux, and D. Alan Tennant. 2022. “Quantum Wake Dynamics in Heisenberg Antiferromagnetic Chains.” ArXiv. https://doi.org/10.48550/ARXIV.2201.03536.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Samarakoon, Anjana M., Pontus Laurell, Christian Balz, Arnab Banerjee, Paula Lampen-Kelley, David Mandrus, Stephen E. Nagler, Satoshi Okamoto, and D. Alan Tennant. 2022. “Extraction of the Interaction Parameters for $α-$RuCl$_3$ from Neutron Data Using Machine Learning.” ArXiv. https://doi.org/10.48550/ARXIV.2202.10715.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Slagle, Kevin, Yue Liu, David Aasen, Hannes Pichler, Roger S. K. Mong, Xie Chen, Manuel Endres, and Jason Alicea. 2022. “Quantum Spin Liquids Bootstrapped from Ising Criticality in Rydberg Arrays.” ArXiv. https://doi.org/10.48550/ARXIV.2204.00013.

20221.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

McGuire, Michael A., Yun-Yi Pai, Matthew Brahlek, Satoshi Okamoto, and R. G. Moore. 2022. “Electronic and Topological Properties of the Van Der Waals Layered Superconductor PtTe.” ArXiv. https://doi.org/10.48550/ARXIV.2203.06655.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Samarakoon, A. M., D. Alan Tennant, Feng Ye, Qiang Zhang, and S. A. Grigera. 2021. “Integration of Machine Learning with Neutron Scattering: Hamiltonian Tuning in Spin Ice with Pressure.” arXiv. https://doi.org/10.48550/ARXIV.2110.15817.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

McGuire, Michael A., Qiang Zhang, Hu Miao, Wei Luo, Mina Yoon, Yaohua Liu, Turgut Yilmaz, and Elio Vescovo. 2021. “Antiferromagnetic Order and Linear Magnetoresistance in Fe-Substituted Shandite Co3In2S2.” Chemistry of Materials 33 (24): 9741–49. https://doi.org/10.1021/acs.chemmater.1c03596.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Slagle, Kevin, David Aasen, Hannes Pichler, Roger S. K. Mong, Paul Fendley, Xie Chen, Manuel Endres, and Jason Alicea. 2021. “Microscopic Characterization of Ising Conformal Field Theory in Rydberg Chains.” ArXiv. https://doi.org/10.48550/ARXIV.2108.09309.

20211.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Dupont, Maxime, and Joel E. Moore. 2021. “Quantum Criticality Using a Superconducting Quantum Processor.” ArXiv. https://doi.org/10.48550/ARXIV.2109.10909.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Sbierski, Björn, Max Geier, An-Ping Li, Matthew Brahlek, Robert G. Moore, and Joel E. Moore. 2021. “Identifying Majorana Vortex Modes via Non-Local Transport.” ArXiv. https://doi.org/10.48550/ARXIV.2107.11226.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Beckey, Jacob L., N. Gigena, Patrick J. Coles, and M. Cerezo. 2021. “Computable and Operationally Meaningful Multipartite Entanglement Measures.” Physical Review Letters 127 (14). https://doi.org/10.1103/physrevlett.127.140501.

20211.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and

Hall, Benjamin, Alessandro Roggero, Alessandro Baroni, and Joseph Carlson. 2021. “Simulation of Collective Neutrino Oscillations on a Quantum Computer.” Physical Review D 104 (6). https://doi.org/10.1103/physrevd.104.063009.

20211.2.2.05 Strong interactions and dynamics: from quarks to nuclei

Lowe, Angus, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio. 2021. “Unified Approach to Data-Driven Quantum Error Mitigation.” Physical Review Research 3 (3). https://doi.org/10.1103/physrevresearch.3.033098.

20211.2.1.02 EMQD: Error mitigation on near‐term quantum devices

Li, Chuan-Hsun, Yangqian Yan, Shih-Wen Feng, Sayan Choudhury, David B. Blasing, Qi Zhou, and Yong P. Chen. 2022. “Bose-Einstein Condensate on a Synthetic Topological Hall Cylinder.” PRX Quantum 3 (1). https://doi.org/10.1103/prxquantum.3.010316.

20221.3.3.03 Squeezed Readout of Quantum Sensors

Volkoff, T. J., and Michael J. Martin. 2022. “Asymptotic Optimality of Twist-Untwist Protocols for Heisenberg Scaling in Atom-Based Sensing.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.013236.

20221.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and

Samarakoon, Anjana M., S. A. Grigera, D. Alan Tennant, Alexander Kirste, Bastian Klemke, Peter Strehlow, Michael Meissner, et al. 2022. “Anomalous Magnetic Noise in an Imperfectly Flat Landscape in the Topological Magnet Dy 2 Ti 2 O 7.” Proceedings of the National Academy of Sciences 119 (5). https://doi.org/10.1073/pnas.2117453119.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Beckey, Jacob L., M. Cerezo, Akira Sone, and Patrick J. Coles. 2022. “Variational Quantum Algorithm for Estimating the Quantum Fisher Information.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.013083.

20221.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and

Mazza, Alessandro R., Xingyao Gao, Daniel J. Rossi, Brianna L. Musico, Tyler W. Valentine, Zachary Kennedy, Jie Zhang, et al. 2021. “Searching for Superconductivity in High Entropy Oxide Ruddlesden–Popper Cuprate Films.” Journal of Vacuum Science & Technology A 40 (1). https://doi.org/10.1116/6.0001441.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Samarakoon, Anjana M, and D Alan Tennant. 2021. “Machine Learning for Magnetic Phase Diagrams and Inverse Scattering Problems.” Journal of Physics: Condensed Matter 34 (4): 044002. https://doi.org/10.1088/1361-648x/abe818.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

Neupert, Titus, M. Michael Denner, Jia-Xin Yin, Ronny Thomale, and M. Zahid Hasan. 2021. “Charge Order and Superconductivity in Kagome Materials.” Nature Physics 18 (2): 137–43. https://doi.org/10.1038/s41567-021-01404-y.

20211.1.1.02 Controlling and Interacting with Anyons

Xu, Yang, and Yong P. Chen. 2021. “Quantum Transport Study in Three-Dimensional Topological Insulator BiSbTeSe2.” Topological Insulator and Related Topics, 73–124. https://doi.org/10.1016/bs.semsem.2021.07.002.

20211.2.2.04 QSTQM‐BEC: Quantum simulation of topological quantum materials and fiel

Laurell, Pontus, Allen Scheie, Chiron J. Mukherjee, Michael M. Koza, Mechtild Enderle, Zbigniew Tylczynski, Satoshi Okamoto, Radu Coldea, D. Alan Tennant, and Gonzalo Alvarez. 2021. “Quantifying and Controlling Entanglement in the Quantum Magnet Cs2CoCl4.” Physical Review Letters 127 (3). https://doi.org/10.1103/physrevlett.127.037201.

20211.1.2.02 QSLM: Quantum Spin Liquid Materials

Wilson, Blake A., Zhaxylyk A. Kudyshev, Alexander V. Kildishev, Sabre Kais, Vladimir M. Shalaev, and Alexandra Boltasseva. 2021. “Machine Learning Framework for Quantum Sampling of Highly Constrained, Continuous Optimization Problems.” Applied Physics Reviews 8 (4). https://doi.org/10.1063/5.0060481.

20211.2.2.07 MLAO: Machine Learning Assisted Optimization of Quantum Device Design

Şahinoğlu, Burak, and Rolando D. Somma. 2021. “Hamiltonian Simulation in the Low-Energy Subspace.” Npj Quantum Information 7 (1). https://doi.org/10.1038/s41534-021-00451-w.

20211.2.1.01 QSAPS: Quantum simulation algorithms that optimally exploit problem structure

Sone, Akira, M. Cerezo, Jacob L. Beckey, and Patrick J. Coles. 2021. “Generalized Measure of Quantum Fisher Information.” Physical Review A 104 (6). https://doi.org/10.1103/physreva.104.062602.

20211.2.2.06 AIQMQS: Algorithms and implementations for robust quantum metrology and

Rimal, Gaurab, Caleb Schmidt, Hussein Hijazi, Leonard C. Feldman, Yiting Liu, Elizabeth Skoropata, Jason Lapano, et al. 2021. “Effective Reduction of PdCoO2 Thin Films via Hydrogenation and Sign Tunable Anomalous Hall Effect.” Physical Review Materials 5 (5). https://doi.org/10.1103/physrevmaterials.5.l052001.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Kais, Sabre, Travis Humble, Karol Kowalski, Ivano Tavernelli, Philip Walther, and Jiangfeng Du. 2021. “Editorial: Quantum Information and Quantum Computing for Chemical Systems.” Frontiers in Physics 9 (September). https://doi.org/10.3389/fphy.2021.753618.

20211.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Myerson-Jain, Nayan E., Stephen Yan, David Weld, and Cenke Xu. 2022. “Construction of Fractal Order and Phase Transition with Rydberg Atoms.” Physical Review Letters 128 (1). https://doi.org/10.1103/physrevlett.128.017601.

20221.2.2.03 Kitaev Chain Quantum Simulator

Curtis, Jonathan B., Andrey Grankin, Nicholas R. Poniatowski, Victor M. Galitski, Prineha Narang, and Eugene Demler. 2022. “Cavity Magnon-Polaritons in Cuprate Parent Compounds.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.013101.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Solanki, Abhishek B., Simeon I. Bogdanov, Mohammad M. Rahman, Avinash Rustagi, Neil R. Dilley, Tingting Shen, Wenqi Tong, et al. 2022. “Electric Field Control of Interaction between Magnons and Quantum Spin Defects.” Physical Review Research 4 (1). https://doi.org/10.1103/physrevresearch.4.l012025.

20221.3.1.01 Hybrid Quantum Sensors

Senichev, Alexander, Zachariah O. Martin, Samuel Peana, Demid Sychev, Xiaohui Xu, Alexei S. Lagutchev, Alexandra Boltasseva, and Vladimir M. Shalaev. 2021. “Room-Temperature Single-Photon Emitters in Silicon Nitride.” Science Advances 7 (50). https://doi.org/10.1126/sciadv.abj0627.

20211.3.1.01 Hybrid Quantum Sensors

Zhang, Qiang, Satoshi Okamoto, German D. Samolyuk, Matthew B. Stone, Alexander I. Kolesnikov, Rui Xue, Jiaqiang Yan, Michael A. McGuire, David Mandrus, and D. Alan Tennant. 2021. “Unusual Exchange Couplings and Intermediate Temperature Weyl State in Co3Sn2S2.” Physical Review Letters 127 (11). https://doi.org/10.1103/physrevlett.127.117201.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Wang, Derek S., Christopher J. Ciccarino, Johannes Flick, and Prineha Narang. 2021. “Hybridized Defects in Solid-State Materials as Artificial Molecules.” ACS Nano 15 (3): 5240–48. https://doi.org/10.1021/acsnano.0c10601.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Philbin, John P., and Prineha Narang. 2021. “Computational Materials Insights Into Solid-State Multiqubit Systems.” PRX Quantum 2 (3). https://doi.org/10.1103/prxquantum.2.030102.

20211.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Lapano, Jason, Ondrej Dyck, Andrew R. Lupini, Wonhee Ko, Haoxiang Li, Hu Miao, Ho Nyung Lee, et al. 2021. “Van Der Waals Epitaxy Growth of Bi2Se3 on a Freestanding Monolayer Graphene Membrane: Implications for Layered Materials and Heterostructures.” ACS Applied Nano Materials 4 (8): 7607–13. https://doi.org/10.1021/acsanm.1c01170.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Hasan, M. Zahid, Guoqing Chang, Ilya Belopolski, Guang Bian, Su-Yang Xu, and Jia-Xin Yin. 2021. “Weyl, Dirac and High-Fold Chiral Fermions in Topological Quantum Matter.” Nature Reviews Materials 6 (9): 784–803. https://doi.org/10.1038/s41578-021-00301-3.

20211.1.1.02 Controlling and Interacting with Anyons

Yang, Shuyang, Niels B. M. Schröter, Vladimir N. Strocov, Sergej Schuwalow, Mohana Rajpalk, Keita Ohtani, Peter Krogstrup, et al. 2022. “Electronic Structure of InAs and InSb Surfaces: Density Functional Theory and Angle‐Resolved Photoemission Spectroscopy.” Advanced Quantum Technologies 5 (3). https://doi.org/10.1002/qute.202100033.

20221.1.1.02 Controlling and Interacting with Anyons

Zhang, Shang-Shun, Gábor B. Halász, and Cristian D. Batista. 2022. “Theory of the Kitaev Model in a [111] Magnetic Field.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-28014-3.

20221.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Kong, Xiangru, Wei Luo, Linyang Li, Mina Yoon, Tom Berlijn, and Liangbo Liang. 2022. “Floquet Band Engineering and Topological Phase Transitions in 1T’ Transition Metal Dichalcogenides.” 2D Materials 9 (2): 025005. https://doi.org/10.1088/2053-1583/ac4957.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Lüpke, Felix, Anh D. Pham, Yi-Fan Zhao, Ling-Jie Zhou, Wenchang Lu, Emil Briggs, Jerzy Bernholc, et al. 2022. “Local Manifestations of Thickness-Dependent Topology and Edge States in the Topological Magnet MnBi2Te4.” Physical Review B 105 (3). https://doi.org/10.1103/physrevb.105.035423.

20221.2.3.03 SQCA‐QS: Scalable quantum and classical algorithms and software technol

Scheie, A., Pontus Laurell, P. A. McClarty, G. E. Granroth, M. B. Stone, R. Moessner, and S. E. Nagler. 2022. “Spin-Exchange Hamiltonian and Topological Degeneracies in Elemental Gadolinium.” Physical Review B 105 (10). https://doi.org/10.1103/physrevb.105.104402.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Scheie, A., Pontus Laurell, P. A. McClarty, G. E. Granroth, M. B. Stone, R. Moessner, and S. E. Nagler. 2022. “Dirac Magnons, Nodal Lines, and Nodal Plane in Elemental Gadolinium.” Physical Review Letters 128 (9). https://doi.org/10.1103/physrevlett.128.097201.

20221.1.2.02 QSLM: Quantum Spin Liquid Materials

Poniatowski, Nicholas R., Jonathan B. Curtis, Amir Yacoby, and Prineha Narang. 2022. “Spectroscopic Signatures of Time-Reversal Symmetry Breaking Superconductivity.” Communications Physics 5 (1). https://doi.org/10.1038/s42005-022-00819-0.

20221.1.3.01 PQMSC: Probing Quantum Matter using Superconductor Circuits

Ness, Hervé, Ivan A. Sadovskyy, Andrey E. Antipov, Mark van Schilfgaarde, and Roman M. Lutchyn. 2022. “Supercurrent Decay in Ballistic Magnetic Josephson Junctions.” Npj Computational Materials 8 (1). https://doi.org/10.1038/s41524-021-00694-3.

20221.1.1.02 Controlling and Interacting with Anyons

Thomson, Alex, Ina M. Sorensen, Stevan Nadj-Perge, and Jason Alicea. 2022. “Gate-Defined Wires in Twisted Bilayer Graphene: From Electrical Detection of Intervalley Coherence to Internally Engineered Majorana Modes.” Physical Review B 105 (8). https://doi.org/10.1103/physrevb.105.l081405.

20221.1.2.01 RMA‐QSL: Realizing and Manipulating Anyons in Quantum Spin Liquids

Klocke, Kai, Joel E. Moore, Jason Alicea, and Gábor B. Halász. 2022. “Thermal Probes of Phonon-Coupled Kitaev Spin Liquids: From Accurate Extraction of Quantized Edge Transport to Anyon Interferometry.” Physical Review X 12 (1). https://doi.org/10.1103/physrevx.12.011034.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Pai, Yun-Yi, Claire E. Marvinney, Matthew A. Feldman, Brian Lerner, Yoong Sheng Phang, Kai Xiao, Jiaqiang Yan, et al. 2021. “Magnetostriction of α-RuCl3 Flakes in the Zigzag Phase.” The Journal of Physical Chemistry C 125 (46): 25687–94. https://doi.org/10.1021/acs.jpcc.1c07472.

20211.3.1.01 Hybrid Quantum Sensors

Abbamonte, Peter, Daniel Baxter, Yonatan Kahn, Gordan Krnjaic, Noah Kurinsky, Bashi Mandava, and Lucas K. Wagner. 2022. “Revisiting the Dark Matter Interpretation of Excess Rates in Semiconductors.” Physical Review D 105 (12). https://doi.org/10.1103/physrevd.105.123002.

20221.3.3.01 Low Background Sensors and Materials

Rosa, Priscila F. S., Ashley Weiland, Shannon S. Fender, Brian L. Scott, Filip Ronning, Joe D. Thompson, Eric D. Bauer, and Sean M. Thomas. 2022. “Single Thermodynamic Transition at 2 K in Superconducting UTe2 Single Crystals.” Communications Materials 3 (1). https://doi.org/10.1038/s43246-022-00254-2.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Adari, P., A. Aguilar-Arevalo, D. Amidei, G. Angloher, E. Armengaud, C. Augier, L. Balogh, et al. 2022. “EXCESS Workshop: Descriptions of Rising Low-Energy Spectra.” ArXiv. https://doi.org/10.48550/ARXIV.2202.05097.

20221.3.3.01 Low Background Sensors and Materials

Bac, S.-K., K. Koller, F. Lux, J. Wang, L. Riney, K. Borisiak, W. Powers, et al. 2022. “Topological Response of the Anomalous Hall Effect in MnBi2Te4 Due to Magnetic Canting.” Npj Quantum Materials 7 (1). https://doi.org/10.1038/s41535-022-00455-5.

20221.1.1.01 Topological materials prediction, synthesis, materials development

Claudino, Daniel, Bo Peng, Nicholas P Bauman, Karol Kowalski, and Travis S Humble. 2021. “Improving the Accuracy and Efficiency of Quantum Connected Moments Expansions*.” Quantum Science and Technology 6 (3): 034012. https://doi.org/10.1088/2058-9565/ac0292.

20211.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum

Bauman, Nicholas P., and Karol Kowalski. 2022. “Coupled Cluster Downfolding Methods: The Effect of Double Commutator Terms on the Accuracy of Ground-State Energies.” The Journal of Chemical Physics 156 (9). https://doi.org/10.1063/5.0076260.

20221.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum

Kowalski, Karol. 2021. “Dimensionality Reduction of the Many-Body Problem Using Coupled-Cluster Subsystem Flow Equations: Classical and Quantum Computing Perspective.” Physical Review A 104 (3). https://doi.org/10.1103/physreva.104.032804.

20211.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum

Bylaska, Eric J., Duo Song, Nicholas P. Bauman, Karol Kowalski, Daniel Claudino, and Travis S. Humble. 2021. “Quantum Solvers for Plane-Wave Hamiltonians: Abridging Virtual Spaces Through the Optimization of Pairwise Correlations.” Frontiers in Chemistry 9 (March). https://doi.org/10.3389/fchem.2021.603019.

20211.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum

Bauman, Nicholas P., and Karol Kowalski. 2022. “Coupled Cluster Downfolding Theory: Towards Universal Many-Body Algorithms for Dimensionality Reduction of Composite Quantum Systems in Chemistry and Materials Science.” Materials Theory 6 (1). https://doi.org/10.1186/s41313-022-00046-8.

20221.2.3.02 RRMB‐QC: Reduced‐rank many‐body Hamiltonian representations for quantum

Selvarajan, Raja, Manas Sajjan, and Sabre Kais. 2022. “Variational Quantum Circuits to Prepare Low Energy Symmetry States.” Symmetry 14 (3): 457. https://doi.org/10.3390/sym14030457.

20221.2.1.03 DQALM: Developing quantum algorithms and quantum machine learning for m

Carbone, Alessandro, Davide Emilio Galli, Mario Motta, and Barbara Jones. 2022. “Quantum Circuits for the Preparation of Spin Eigenfunctions on Quantum Computers.” Symmetry 14 (3): 624. https://doi.org/10.3390/sym14030624.

20221.2.1.04 NASL: Towards non‐abelian spin liquids characterization on quantum hard

Copenhaver, Justin, and Jukka I. Väyrynen. 2022. “Edge Spin Transport in the Disordered Two-Dimensional Topological Insulator WTe2.” Physical Review B 105 (11). https://doi.org/10.1103/physrevb.105.115402.

20221.1.1 Topological Electronic Materials

Zhang, Jie, Yun-Yi Pai, Jason Lapano, Alessandro R. Mazza, Ho Nyung Lee, Rob G. Moore, Benjamin J. Lawrie, et al. 2021. “Design and Realization of Ohmic and Schottky Interfaces for Oxide Electronics.” Small Science 2 (2). https://doi.org/10.1002/smsc.202100087.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Miao, H., Y. L. Wang, J.-X. Yin, J. Zhang, S. Zhang, M. Z. Hasan, R. Yang, et al. 2021. “Hund’s Superconductor Li(Fe,Co)As.” Physical Review B 103 (5). https://doi.org/10.1103/physrevb.103.054503.

20211.1.1.02 Controlling and Interacting with Anyons

Thomas, S. M., C. Stevens, F. B. Santos, S. S. Fender, E. D. Bauer, F. Ronning, J. D. Thompson, A. Huxley, and P. F. S. Rosa. 2021. “Spatially Inhomogeneous Superconductivity in UTe2.” Physical Review B 104 (22). https://doi.org/10.1103/physrevb.104.224501.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Avers, K. E., P. A. Maksimov, P. F. S. Rosa, S. M. Thomas, J. D. Thompson, W. P. Halperin, R. Movshovich, and A. L. Chernyshev. 2021. “Fingerprinting Triangular-Lattice Antiferromagnet by Excitation Gaps.” Physical Review B 103 (18). https://doi.org/10.1103/physrevb.103.l180406.

20211.1.1.02 Controlling and Interacting with Anyons

Yao, Xiong, Matthew Brahlek, Hee Taek Yi, Deepti Jain, Alessandro R. Mazza, Myung-Geun Han, and Seongshik Oh. 2021. “Hybrid Symmetry Epitaxy of the Superconducting Fe(Te,Se) Film on a Topological Insulator.” Nano Letters 21 (15): 6518–24. https://doi.org/10.1021/acs.nanolett.1c01703.

20211.1.1 Topological Electronic Materials

Zhang, Shang-Shun, Gábor B. Halász, Wei Zhu, and Cristian D. Batista. 2021. “Variational Study of the Kitaev-Heisenberg-Gamma Model.” Physical Review B 104 (1). https://doi.org/10.1103/physrevb.104.014411.

20211.1.2 Quantum Spin Systems

Liu, Chunxiao, Gábor B. Halász, and Leon Balents. 2021. “Symmetric U(1) and Z2 Spin Liquids on the Pyrochlore Lattice.” Physical Review B 104 (5). https://doi.org/10.1103/physrevb.104.054401.

20211.1.2 Quantum Spin Systems

Scheie, A., Pontus Laurell, A. M. Samarakoon, B. Lake, S. E. Nagler, G. E. Granroth, S. Okamoto, G. Alvarez, and D. A. Tennant. 2021. “Witnessing Entanglement in Quantum Magnets Using Neutron Scattering.” Physical Review B 103 (22). https://doi.org/10.1103/physrevb.103.224434.

20211.1.2 Quantum Spin Systems

Chirolli, Luca, and Joel E. Moore. 2021. “Enhanced Coherence in Superconducting Circuits via Band Engineering.” Physical Review Letters 126 (18). https://doi.org/10.1103/physrevlett.126.187701.

20211.1.1 Topological Electronic Materials

Wang, Derek S., Tomáš Neuman, and Prineha Narang. 2021. “Spin Emitters beyond the Point Dipole Approximation in Nanomagnonic Cavities.” The Journal of Physical Chemistry C 125 (11): 6222–28. https://doi.org/10.1021/acs.jpcc.0c11536.

20211.1.3 Quantum Probes

Lesser, Omri, Andrew Saydjari, Marie Wesson, Amir Yacoby, and Yuval Oreg. 2021. “Phase-Induced Topological Superconductivity in a Planar Heterostructure.” Proceedings of the National Academy of Sciences 118 (27). https://doi.org/10.1073/pnas.2107377118.

20211.1.3 Quantum Probes

Li, Haoxiang, T. T. Zhang, A. Said, G. Fabbris, D. G. Mazzone, J. Q. Yan, D. Mandrus, et al. 2021. “Giant Phonon Anomalies in the Proximate Kitaev Quantum Spin Liquid α-RuCl3.” Nature Communications 12 (1). https://doi.org/10.1038/s41467-021-23826-1.

20211.1.2 Quantum Spin Systems

Väyrynen, Jukka I., Dmitry I. Pikulin, and Roman M. Lutchyn. 2021. “Majorana Signatures in Charge Transport through a Topological Superconducting Double-Island System.” Physical Review B 103 (20). https://doi.org/10.1103/physrevb.103.205427.

20211.1.1 Topological Electronic Materials

Yin, Jia-Xin, Shuheng H. Pan, and M. Zahid Hasan. 2021. “Probing Topological Quantum Matter with Scanning Tunnelling Microscopy.” Nature Reviews Physics 3 (4): 249–63. https://doi.org/10.1038/s42254-021-00293-7.

20211.1.1 Topological Electronic Materials

Sbierski, Björn, Elizabeth J. Dresselhaus, Joel E. Moore, and Ilya A. Gruzberg. 2021. “Criticality of Two-Dimensional Disordered Dirac Fermions in the Unitary Class and Universality of the Integer Quantum Hall Transition.” Physical Review Letters 126 (7). https://doi.org/10.1103/physrevlett.126.076801.

20211.1.1 Topological Electronic Materials

Kao, Wen-Han, Johannes Knolle, Gábor B. Halász, Roderich Moessner, and Natalia B. Perkins. 2021. “Vacancy-Induced Low-Energy Density of States in the Kitaev Spin Liquid.” Physical Review X 11 (1). https://doi.org/10.1103/physrevx.11.011034.

20211.1.2 Quantum Spin Systems

Balz, C., L. Janssen, P. Lampen-Kelley, A. Banerjee, Y. H. Liu, J.-Q. Yan, D. G. Mandrus, M. Vojta, and S. E. Nagler. 2021. “Field-Induced Intermediate Ordered Phase and Anisotropic Interlayer Interactions in α−RuCl3.” Physical Review B 103 (17). https://doi.org/10.1103/physrevb.103.174417.

20211.1.2 Quantum Spin Systems

Schönemann, Rico, Shusaku Imajo, Franziska Weickert, Jiaqiang Yan, David G. Mandrus, Yasumasa Takano, Eric L. Brosha, et al. 2020. “Thermal and Magnetoelastic Properties of α−RuCl3 in the Field-Induced Low-Temperature States.” Physical Review B 102 (21). https://doi.org/10.1103/physrevb.102.214432.

20201.1.2 Quantum Spin Systems

Scheie, A., N. E. Sherman, M. Dupont, S. E. Nagler, M. B. Stone, G. E. Granroth, J. E. Moore, and D. A. Tennant. 2021. “Detection of Kardar–Parisi–Zhang Hydrodynamics in a Quantum Heisenberg Spin-1/2 Chain.” Nature Physics 17 (6): 726–30. https://doi.org/10.1038/s41567-021-01191-6.

20211.1.2 Quantum Spin Systems

Klocke, Kai, David Aasen, Roger S. K. Mong, Eugene A. Demler, and Jason Alicea. 2021. “Time-Domain Anyon Interferometry in Kitaev Honeycomb Spin Liquids and Beyond.” Physical Review Letters 126 (17). https://doi.org/10.1103/physrevlett.126.177204.

20211.1.2 Quantum Spin Systems

Khindanov, Aleksei, Jason Alicea, Patrick Lee, William S. Cole, and Andrey E. Antipov. 2021. “Topological Superconductivity in Nanowires Proximate to a Diffusive Superconductor–Magnetic-Insulator Bilayer.” Physical Review B 103 (13). https://doi.org/10.1103/physrevb.103.134506.

20211.1.1.01 Topological materials prediction, synthesis, materials development

Hamann, Danielle M., Sven P. Rudin, Tomoya Asaba, Filip Ronning, Dmitri Leo M. Cordova, Ping Lu, and David C. Johnson. 2021. “Predicting and Synthesizing Interface Stabilized 2D Layers.” Chemistry of Materials 33 (13): 5076–84. https://doi.org/10.1021/acs.chemmater.1c01064.

20211.1.1.01 Topological materials prediction, synthesis, materials development