QUANTUM ERROR CORRECTION: A BRIEF TUTORIAL

Eddie Schoute'?
2024

TLos Alamos National Laboratory
2|BM Research

eddie.schoute@ibm. com, LA-UR-24-25824

CLASSICAL ERROR CORRECTION

REPETITION CODE

REPETITION CODE

0 = 000 1111

REPETITION CODE

0 = 000 1111

We can detect 1-2 errors
001, 101.

Can correct at most 1 error.

REPETITION CODE

0 = 000 1111

We can detect 1-2 errors
001, 101.

Can correct at most 1 error.

Correction of i.i.d bit flips with probability p gives O(p?) error probability.

ENCODING AND DECODING

For protection, we encode our logical information in a code.

encoding

001 ———> (000)(000)(111)

ENCODING AND DECODING

For protection, we encode our logical information in a code.

encoding

001 ———> (000)(000)(111)

Now if errors occur, our decoding can correct them

error channel decoding

(000)(000)(111) ——— (100)(000)(101) —— 001

Success if 1 or less errors occur in each code block.

CODE THRESHOLD

Threshold are generally computed
numerically.
Tells us when it's worth using a code.

CODE THRESHOLD

Performance of repetition codes

= Threshold are generally computed
d=5 numerically.

| —e— a=7

—— 49 Tells us when it's worth using a code.

= = =2 =
N =] o [=]

Decoding failure probability

[=]
L]

(=]
(=]

01 02 03 04 05 0.6 07 0.8 09
Bit flip probability

Figure: Threshold of p=0.5. Image [Del23]

CODE THRESHOLD

Performance of repetition codes

Threshold are generally computed
d=5 numerically.
Tells us when it's worth using a code.

t
z

'
:

[=]
=]

Phase error threshold

[=]
i

Our simple repetition code cannot
detect Z errors, so it has 0 threshold
for general quantum error channels.

Decoding failure probability
(=]
L)

(=]
(=]

EP.I 1 D.IZ 0 .I3 0.|4 0? 5 0 Iﬁ 0 I'.f o I8 0. I9 ’
et B Some codes don't have a threshold (but

i [
Figure: Threshold of p=0.5. Image [Del23] are still useful)!

CLASSICAL ERROR CORRECTION

CLASSICAL LINEAR CODES

LINEAR CODES

Linear code
Given code words C' C Z%, then C'is a linear code if z,y € C = z+y € C.

LINEAR CODES

Linear code
Given code words C' C Z%, then C'is a linear code if z,y € C = z+y € C.

Recall the repetition code has code words
C = {000,111}

and we can verify C'is linear. (Note: 14+1=0 € Z,.)

LINEAR CODES

Linear code
Given code words C' C Z%, then C'is a linear code if z,y € C = z+y € C.

Recall the repetition code has code words
C = {000,111}

and we can verify C'is linear. (Note: 14+1=0 € Z,.)

Since the repetition code is linear, we can consider logical bits as a basis {z,;}¥_,
and construct code words through the generator matrix

G=(11 1),

ie., (0) G = 000 and (1) G = 111.

GENERATOR AND PARITY MATRIX

We have encoded k = 1 logical bits using n = 3 physical bits using the reptition
code. Therefore, the generator matrix has rank 1 (out of 3)

G=(11 1),

GENERATOR AND PARITY MATRIX

We have encoded k = 1 logical bits using n = 3 physical bits using the reptition
code. Therefore, the generator matrix has rank 1 (out of 3)

G=(11 1),

the remaining two dimensions are the orthogonal space spanned by a parity

check matrix
1 1
H = U .
01 1

GENERATOR AND PARITY MATRIX

We have encoded k = 1 logical bits using n = 3 physical bits using the reptition
code. Therefore, the generator matrix has rank 1 (out of 3)

G=(11 1),

the remaining two dimensions are the orthogonal space spanned by a parity

check matrix
1 1
H = U .
01 1

Now it is easy to check if we have a valid code word, since HZ = 0 for any valid
code word, e.g,,

H{1]l=0, H|0o|=1. (1)

[N,K,D] NOTATION

We can summarily describe linear codes using the notation [n, k, d:

» For n physical bits
» Encoding k logical bits
P With d bit flips between codewords (|z —y| > d for all z,y € O).

The repetition code is an [n, 1,n] code.

QUANTUM ERROR CORRECTION

STABILIZER CODES

STABILIZER CODES

Recall a parity check matrix of the repetition code

1 1
H = 0 .
(0 1 1)

Recall a parity check matrix of the repetition code
1 1
H= 0 .
0 1 1

In a quantum computer, we can check for bit flips using a Z measurement. To see

that, note
{xhzt = {=zlix}

so if we measure Z its parity will flip when a bit has flipped.

STABILIZER CODES

Recall a parity check matrix of the repetition code

1 1 0
H= .
0 1 1
In a quantum computer, we can check for bit flips using a Z measurement. To see

that, note
{xhzt = {=zlix}

so if we measure Z its parity will flip when a bit has flipped.

Now we can rewrite the classical repetition code as

H:ZZO.
0 Z 7

IMPLEMENTING A STABILIZER MEASUREMENT

How do we implement
7 Z Z 0 ?
0 7Z Z

IMPLEMENTING A STABILIZER MEASUREMENT
How do we implement
7 Z Z 0 ?
0 7Z Z

We can measure Z,Z, and Z,Z, by

—~
<
Jany
©
Jany
©

I

I

—~
=
Jany
©
Jany
©
T
I
I

IMPLEMENTING A STABILIZER MEASUREMENT
How do we implement
7 Z Z 0 ?
0 7Z Z

We can measure Z,Z, and Z,Z, by

E1ET

—~

<
Jany
©
Jany

=y
(0] 4

Process syndrome

>

[anY

>
I

We can correct any one X error.

[[71,3]] copE

Time to construct your first quantum error-correcting code!
Let’s consider the (classical) Hamming code (a [7,4, 3] code) with stabilizers

Z Z Z Z 0 0 0
zZ Z 0 0 Z Z 0
Z 0 Z 0 Z 0 Z

10

[[71,3]] copE

Time to construct your first quantum error-correcting code!

Let’s consider the (classical) Hamming code (a [7,4, 3] code) with stabilizers

Z Z Z Z 0 0 0
zZ Z 0 0 Z Z 0
Z 0 Z 0 Z 0 Z
X X X X 0 0 0
X X 0 0 X X 0
X 0 X 0 X 0 X

Now we can correct any one X or Z or XZ = Yerror. This is a [[7, 1, 3]] code (the
Steane code).

10

[[71,3]] copE

Time to construct your first quantum error-correcting code!

Let’s consider the (classical) Hamming code (a [7,4, 3] code) with stabilizers

Z Z Z Z 0 0 0
zZ Z 0 0 Z Z 0
Z 0 Z 0 Z 0 Z
X X X X 0 0 0
X X 0 0 X X 0
X 0 X 0 X 0 X

Now we can correct any one X or Z or XZ = Yerror. This is a [[7, 1, 3]] code (the
Steane code).

Definition
A CSS code consists of solely Z and solely X stabilizers.

10

CODESPACE DIMENSION

The stabilizer generators of the [[7, 1, 3]] code are

Z Z Z Z 0 0 0
Z Z 0 0 Z Z 0
Z 0 Z 0 Z 0 Z
X X X X 0 0 0
X X 0 0 X X 0
X 0 X 0 X 0 X

and they protect information from Pauli errors, but is there even a logical qubit
here?

"

CODESPACE DIMENSION

The stabilizer generators of the [[7, 1, 3]] code are

Z Z Z Z 0 0 0
Z Z 0 0 Z Z 0
Z 0 Z 0 Z 0 Z
X X X X 0 0 0
X X 0 0 X X 0
X 0 X 0 X 0 X
and they protect information from Pauli errors, but is there even a logical qubit

here?

All stabilizers commute. So there is a 2% dimensional subspace that is the
common +1 eigenstate of all stabilizers. A qubit!

"

CODESPACE DIMENSION

The stabilizer generators of the [[7, 1, 3]] code are

Z Z Z Z 0 0 0
Z Z 0 0 Z Z 0
Z 0 Z 0 Z 0 Z
X X X X 0 0 0
X X 0 0 X X 0
X 0 X 0 X 0 X
and they protect information from Pauli errors, but is there even a logical qubit

here?

All stabilizers commute. So there is a 2% dimensional subspace that is the
common +1 eigenstate of all stabilizers. A qubit!

The logical operations commute with all stabilizers:

Z=2777Z7Z27, X =XXXXXXX
1

LOGICAL QUBIT

We can compute what the logical |0) state is by projecting into the +1 eigenspace

of all stabilizers.
Let's start with

Z stabilizers

10000000) ———— |0000000).

12

LOGICAL QUBIT

We can compute what the logical |0) state is by projecting into the +1 eigenspace

of all stabilizers.
Let’s start with

Z stabilizers

10000000) ———— |0000000).

Now let's measure XX XXIII

10000000) — 7(1000000@ (—1)*X X X X1II|000000))
a=0
S f(yoooooom +1111000))

We can fix the a = 1 outcome by applying a Z;.

12

LOGICAL QUBIT

We can compute what the logical |0) state is by projecting into the +1 eigenspace

of all stabilizers.
Let’s start with

Z stabilizers

10000000) ———— |0000000).

Question
Now let's measure XXX XIIT Check that the
resulting state still is
10000000) — 7(1000000@ (—1)*XXXXIII000000)) 41 eigenstate of Z
a=0 stabilizers.
— f(yoooooom + [1111000))

We can fix the a = 1 outcome by applying a Z;.

12

LOGICAL QUBIT

We can compute what the logical |0) state is by projecting into the +1 eigenspace

of all stabilizers.
Let’s start with

Z stabilizers

10000000) ———— |0000000).

Question
Now let's measure XXX XIIT Check that the
resulting state still is
10000000) — 7(1000000@ (—1)*XXXXIII000000)) 41 eigenstate of Z
a=0 stabilizers.
— f(yoooooom + [1111000))

We can fix the a = 1 outcome by applying a Z;.
Applying the remaining two X stabilizers gives us logical [0). Then |1) = X|0).

12

SURFACE CODES

SURFACE CODES

STABILIZERS IN 2D

The stabilizers of a surface code are
given graphically.

Z Z

4 Z

Figure: A ZZZ Z stabilizer

X X

Figure: An XX X X stabilizer

13

STABILIZERS IN 2D

The stabilizers of a surface code are
given graphically.

Z Z

4 Z

Figure: A ZZZ Z stabilizer

X X

Figure: An XX X X stabilizer

13

STABILIZERS IN 2D

The stabilizers of a surface code are
given graphically.

1 3
Z Z
Z Z
4 5 6 . .
Figure: A ZZZZ stabilizer
X X
7 8 9
X X

Figure: Surface code (a [[9],3]] code) Figure: An XXX X stabilizer

13

LOGICAL OPERATIONS ON A SURFACE CODE

1 3
There are logical operations supported
on 3 qubits:
1. X, XX is a logical X.
4 5 6
7 8 9

Figure: Surface code (a [[9,3]] code)

LOGICAL OPERATIONS ON A SURFACE CODE

: ’ There are logical operations supported
on 3 qubits:
1. X, XX is a logical X.
- 2 - 2. ZyZ:Z4 is a logical Z.
Check for yourself that this works.
7 8 9

Figure: Surface code (a [[9,3]] code)

LOGICAL OPERATIONS ON A SURFACE CODE

There are logical operations supported
on 3 qubits:

1. X, XX is a logical X.
2. ZyZ:Z4 is a logical Z.
Check for yourself that this works.

Question
Are there other logical operations that
could work?

Figure: Surface code (a [[9,3]] code)

SCALING THE SURFACE CODE DISTANCE

£

)

C

N N

Figure: Distance 5 surface code. (What is [[n,k,d]]
here?)

15

SCALING THE SURFACE CODE DISTANCE

£

)

C

N

Figure: Distance 5 surface code. (What is [[n,k,d]]

here?)

N

Surface codes have a high
error-correction threshold of
about 1%.

15

SCALING THE SURFACE CODE DISTANCE

Figure: Distance 5 surface code. (What is [[n,k,d]]

here?)

£

)

C

N

N

Surface codes have a high
error-correction threshold of
about 1%.

New LDPC codes have a better
encoding rate than

k 1
n+c_0<ﬁ>

for ¢ ancilla measurement
qubits.

15

SURFACE CODES

HOW TO COMPUTE WITH SURFACE CODES

LOGICAL SINGLE-QUBIT OPERATIONS

» We have seen how to perform logical

£

LOGICAL SINGLE-QUBIT OPERATIONS

» We have seen how to perform logical
Z =ZyZ:7Zg and X = X, X; X,.

P Measuring the state in X/Z basis can be
performed by physical X/Z measurements
on each qubit.

£

SURFACE CODE ARCHITECTURE

0O 0O O O O O O o

O O O O O O O O

o O O O O O O o

o o~ O O~ O
o ~~ o o~ o

o
o
o

o
(o}
o
o
o > o > 0o =< O
o
o
o
o

o
o
o

o
[e]
O
[e]
O

e} O O [¢] O O O O [e] o

O O O O e} O O O O

o o oo o 0o’ o o o 0o o o

Figure: By tiling patches in the plane we can make an architecture out of surface codes.

INTERACTING SURFACE CODES WITH LATTICE SURGERY

©

N N

Figure: A joint ZZ measurement by horizontal merge.

INTERACTING SURFACE CODES WITH LATTICE SURGERY

©

N N

Figure: A joint ZZ measurement by horizontal merge. We can perform an XX
measurement vertically.

MULTIQUBIT MEASUREMENT

aX, eXs
@ A A A A @
° ° ° ° ° °
° ° ° ° ° °
bfZ13< ° ° ° ° ° ° |
° ° ° ° ° ° D
Y ¢ e ° A
o A o e
° ° ° ol |»
° ° ° °
df223< e| [[e] fe aceXy3
L] L] L]
A A
cX,

Figure: An XX X measurement by merging
multiple patches [Aus19].

MULTIQUBIT MEASUREMENT

aX, eXs
@ A A A A @
° ° ° ° ° °
° ° ° ° ° °
bfZ13(° ° ° ° ° ° |
° ° ° ° ° °
Y ¢ e ° A
@ A = =
° ° ° ol |»
° ° ° °
dezs(e| [[e] fe aceXy3
L] L] L]
A A
cX,

Figure: An XX X measurement by merging
multiple patches [Aus19].

» We can do more complicated lattice
surgery = optimizations for
particular operations!

MULTIQUBIT MEASUREMENT

aX, eXs
@ A A A A @
° ° ° ° ° °
° ° ° ° ° °
bfZ13(° ° ° ° ° ° |
° ° ° ° ° °
Y ¢ e ° A
@ A = =
° ° ° ol |»
° ° ° °
dezs(e| [[e] fe aceXy3
L] L] L]
A A
cX,

Figure: An XX X measurement by merging
multiple patches [Aus19].

» We can do more complicated lattice
surgery = optimizations for
particular operations!

P But two-qubit lattice surgery is
sufficient to implement a CX gate
(cNoT).

MULTIQUBIT MEASUREMENT

aX, eXs
@ A A A A @
° ° ° ° ° °
° ° ° ° ° °
bfZ13(° ° ° ° ° ° |
° ° ° ° ° °
Y ¢ e ° A
@ A = =
° ° ° ol |»
° ° ° °
dezs(e| [[e] fe aceXy3
L] L] L]
A A
cX,

Figure: An XX X measurement by merging
multiple patches [Aus19].

» We can do more complicated lattice
surgery = optimizations for
particular operations!

P But two-qubit lattice surgery is

sufficient to implement a CX gate
(cNoT).

P With some additional tricks we can
implement all Clifford gates.

ELEMENTARY OPERATIONS

(vi) (viii)

Figure: Elementary operations on a surface code architecture [BKS22].

20

BELL STATE PREPARATION

Figure: Bell state preparation using either ZZ or XX measurement.

21

Figure: Using an ancilla in |[+) we can perform a CX gate.

22

Figure: Using an ancilla in |[+) we can perform a CX gate.

Question
How can the qubits be laid out to do the ZZ and X X measurements?

22

LONG-RANGE CX GATE

1 2 3
—o— 92— a
Bl{ZHX) B
) BH{xHz) ¢
- I {X)— D

(a) CX via Bell state

23

LONG-RANGE CX GATE

1 2 3

Bl{ZHX) B
B;

BriX C
X Z
& vB— @ @
(a) CX via Bell state (b) Longer-range Bell preparation

Figure: Iterating longer-range Bell preparation gives a construction for a long-range CX.

23

LONG-RANGE CX ON ARCHITECTURE

=.l ‘l

a) Prepare Bell pairs

24

LONG-RANGE CX ON ARCHITECTURE

E.l P I

a) Prepare Bell pairs (b) Consume Bell pairs and apply CX

Figure: Long-range CX via iterated longer-range Bell preparation.

24

CNOTS CONNECTED BY EDGE-DISJOINT PATHS

A
Assume 1 : 3 data qubit (black) B
to ancilla (gray/white) ratio. c
Theorem ([BKS22]) 5
Execute all cnoTs connected
via edge-disjoint paths in E
depth 4.

25

FRAGMENT PATHS

» Fragment edge-disjoint
paths into two sets of
vertex-disjoint paths.

P Label each path at a
crossing with {1, 2}.

26

TWO-STAGE PARALLEL CNOT EXECUTION

Figure: Edge-disjoint paths are fragmented into two sets of vertex-disjoint paths.

27

SURFACE CODES

DECODING ERRORS

LINKING UP ERRORS AND DECODING
L £\

Figure: An X error flips two Z-syndrome
measurements.

28

LINKING UP ERRORS AND DECODING

A" L4

4 5 6 4 6
A
7/ 8 9 7/ 8 9
Figure: An X error flips two Z-syndrome Figure: Two errors Z,Z; flip two syndromes
measurements. and can be corrected!

28

LINKING UP ERRORS AND DECODING

A" L4

4 5 6 4 6
A
7/ 8 9 7/ 8 9
Figure: An X error flips two Z-syndrome Figure: Two errors Z,Z; flip two syndromes
measurements. and can be corrected!

Question
Why would applying Z, Z, just as well correct errors in Z,Z,?

28

CONCLUSION

You have learned about:
1. Classical linear codes
2. Quantum stabilizer codes
3. Surface codes and operations

4. Decoding errors on the surface code

29

CONCLUSION

There's a lot more to quantum error

correction!
You have learned about:

P Fault-tolerance (how do we make

1. Classical linear codes)
sure errors do not propagate in bad

2. Quantum stabilizer codes

ways)
3. Surface codes and operations > LDPC codes and other high-rate
4. Decoding errors on the surface code codes

» Decoding algorithms

» Compiling of quantum algorithms to
a QEC architecture

P Universal computation using magic
state distillation

29

CONCLUSION

There's a lot more to quantum error

correction!
You have learned about:

P Fault-tolerance (how do we make
sure errors do not propagate in bad

1. Classical linear codes

2. Quantum stabilizer codes

ways)
3. Surface codes and operations > LDPC codes and other high-rate
4. Decoding errors on the surface code codes
There is a Google group (TQEC design » Decoding algorithms

automation) started by Austin Fowler to
develop tools for compilation. It
includes recordings of helpful lectures.

» Compiling of quantum algorithms to
a QEC architecture

P Universal computation using magic
state distillation

29

TOPOLOGICAL QUANTUM ERROR CORRECTION

*: conditioned on no previous errors

Figure: Evolution of magic state factories [Cra19].

30

RESOURCES

[Aus19]

[BKS22]

[Cra19]

[Del23]

[Fow]

[Got24]

Craig Gidney Austin G. Fowler. “Low overhead quantum computation
using lattice surgery”. Aug. 30, 2019. arXiv: 1808.06709v4 [quant-ph].

Michael Beverland, Vadym Kliuchnikov, and Eddie Schoute. “Surface Code
Compilation via Edge-Disjoint Paths”. In: PRX Quantum 3 (2 May 2022),
p. 020342. DOI: 10.1103/PRXQuantum.3.020342.

Austin G. Fowler Craig Gidney. “Efficient magic state factories with a
catalyzed |CCZ> to 2|T> transformation”. Mar. 26, 2019.

Nicholas Delfosse. “Tutorials on quantum error correction”. 2023.

Austin Fowler. TQEC design automation (Google group). UrL:
https://groups.google.com/g/tqec-design-automation.

Daniel Gottesman. “Surviving as a Quantum Computer in a Classical
World”". May 7, 2024.

31

https://arxiv.org/abs/1808.06709v4
https://doi.org/10.1103/PRXQuantum.3.020342
https://groups.google.com/g/tqec-design-automation

	Classical error correction
	Repetition code
	Classical linear codes

	Quantum error correction
	Stabilizer codes

	Surface codes
	Surface codes
	How to compute with surface codes
	Decoding errors

