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Classical error correction

Repetition code



Repetition code

0 ↦ 000 1 ↦ 111

We can detect 1–2 errors
001, 101.

Can correct at most 1 error.

Correction of i.i.d bit flips with probability 𝑝 gives 𝑂(𝑝2) error probability.
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Encoding and decoding

For protection, we encode our logical information in a code.

001
encoding
−−−−−→ (000)(000)(111)

Now if errors occur, our decoding can correct them

(000)(000)(111)
error channel
−−−−−−−→ (100)(000)(101)

decoding
−−−−−→ 001

Success if 1 or less errors occur in each code block.
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Code threshold

Figure: Threshold of p=0.5. Image [Del23]

Threshold are generally computed
numerically.
Tells us when it’s worth using a code.

Phase error threshold
Our simple repetition code cannot
detect 𝑍 errors, so it has 0 threshold
for general quantum error channels.

Some codes don’t have a threshold (but
are still useful)!
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Classical error correction

Classical linear codes



Linear codes

Linear code
Given code words 𝐶 ⊆ ℤ𝑛

2 , then 𝐶 is a linear code if 𝑥, 𝑦 ∈ 𝐶 ⟹ 𝑥+ 𝑦 ∈ 𝐶.

Recall the repetition code has code words

𝐶 = {000, 111}

and we can verify 𝐶 is linear. (Note: 1 + 1 = 0 ∈ ℤ2.)

Since the repetition code is linear, we can consider logical bits as a basis {𝑥𝑖}𝑘
𝑖=1

and construct code words through the generator matrix

𝐺 = (1 1 1) ,

i.e., (0)𝐺 = 000 and (1)𝐺 = 111.
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Generator and parity matrix

We have encoded 𝑘 = 1 logical bits using 𝑛 = 3 physical bits using the reptition
code. Therefore, the generator matrix has rank 1 (out of 3)

𝐺 = (1 1 1) ,

the remaining two dimensions are the orthogonal space spanned by a parity
check matrix

𝐻 = (1 1 0
0 1 1

) .

Now it is easy to check if we have a valid code word, since 𝐻 ⃗𝑥 = 0 for any valid
code word, e.g.,

𝐻
⎛⎜⎜
⎝

1
1
1

⎞⎟⎟
⎠

= 0, 𝐻
⎛⎜⎜
⎝

1
0
1

⎞⎟⎟
⎠

= 1. (1)
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[n,k,d] notation

We can summarily describe linear codes using the notation [𝑛, 𝑘, 𝑑]:

▶ For 𝑛 physical bits
▶ Encoding 𝑘 logical bits
▶ With 𝑑 bit flips between codewords (|𝑥 − 𝑦| ≥ 𝑑 for all 𝑥, 𝑦 ∈ 𝐶).

The repetition code is an [𝑛, 1, 𝑛] code.

7



Quantum error correction

Stabilizer codes



Stabilizer codes

Recall a parity check matrix of the repetition code

𝐻 = (1 1 0
0 1 1

) .

In a quantum computer, we can check for bit flips using a 𝑍 measurement. To see
that, note

𝑋 𝑍 = −𝑍 𝑋

so if we measure 𝑍 its parity will flip when a bit has flipped.

Now we can rewrite the classical repetition code as

𝐻 = (𝑍 𝑍 0
0 𝑍 𝑍

) .
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Implementing a stabilizer measurement

How do we implement

𝐻 = (𝑍 𝑍 0
0 𝑍 𝑍

)?

We can measure 𝑍1𝑍2 and 𝑍2𝑍3 by

⟨0|
⟨0|

Process syndrome

𝑋
𝑋
𝑋

We can correct any one 𝑋 error.
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[[7,1,3]] code

Time to construct your first quantum error-correcting code!

Let’s consider the (classical) Hamming code (a [7, 4, 3] code) with stabilizers

⎛⎜⎜
⎝

𝑍 𝑍 𝑍 𝑍 0 0 0
𝑍 𝑍 0 0 𝑍 𝑍 0
𝑍 0 𝑍 0 𝑍 0 𝑍

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑋 𝑋 𝑋 𝑋 0 0 0
𝑋 𝑋 0 0 𝑋 𝑋 0
𝑋 0 𝑋 0 𝑋 0 𝑋

⎞⎟⎟
⎠

Now we can correct any one 𝑋 or 𝑍 or 𝑋𝑍 = 𝑌 error. This is a [[7, 1, 3]] code (the
Steane code).

Definition
A CSS code consists of solely 𝑍 and solely 𝑋 stabilizers.
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Codespace dimension

The stabilizer generators of the [[7, 1, 3]] code are

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑍 𝑍 𝑍 𝑍 0 0 0
𝑍 𝑍 0 0 𝑍 𝑍 0
𝑍 0 𝑍 0 𝑍 0 𝑍
𝑋 𝑋 𝑋 𝑋 0 0 0
𝑋 𝑋 0 0 𝑋 𝑋 0
𝑋 0 𝑋 0 𝑋 0 𝑋

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and they protect information from Pauli errors, but is there even a logical qubit
here?

All stabilizers commute. So there is a 27−6 dimensional subspace that is the
common +1 eigenstate of all stabilizers. A qubit!

The logical operations commute with all stabilizers:
̄𝑍 = 𝑍𝑍𝑍𝑍𝑍𝑍𝑍, 𝑋̄ = 𝑋𝑋𝑋𝑋𝑋𝑋𝑋
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Logical qubit

We can compute what the logical | ̄0⟩ state is by projecting into the +1 eigenspace
of all stabilizers.

Let’s start with

|0000000⟩
𝑍 stabilizers
−−−−−−−→ |0000000⟩.

Now let’s measure 𝑋𝑋𝑋𝑋𝐼𝐼𝐼

|0000000⟩ → 1√
2
(|0000000⟩ + (−1)𝑎𝑋𝑋𝑋𝑋𝐼𝐼𝐼|000000⟩)

𝑎=0
−−→ 1√

2
(|0000000⟩ + |1111000⟩)

We can fix the 𝑎 = 1 outcome by applying a 𝑍1.

Question
Check that the
resulting state still is
+1 eigenstate of 𝑍
stabilizers.

Applying the remaining two 𝑋 stabilizers gives us logical | ̄0⟩. Then | ̄1⟩ = 𝑋̄| ̄0⟩.
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Surface codes

Surface codes



Stabilizers in 2D

1 2 3

4 5 6

7 8 9

Figure: Surface code (a [[9,1,3]] code)

The stabilizers of a surface code are
given graphically.

𝑍 𝑍

𝑍𝑍

Figure: A 𝑍𝑍𝑍𝑍 stabilizer

𝑋 𝑋

𝑋 𝑋

Figure: An 𝑋𝑋𝑋𝑋 stabilizer
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Logical operations on a surface code

1 2 3

4 5 6

7 8 9

Figure: Surface code (a [[9,1,3]] code)

There are logical operations supported
on 3 qubits:
1. 𝑋4𝑋5𝑋6 is a logical 𝑋̄.

2. 𝑍2𝑍5𝑍8 is a logical ̄𝑍.
Check for yourself that this works.

Question
Are there other logical operations that
could work?
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Scaling the surface code distance

Figure: Distance 5 surface code. (What is [[n,k,d]]
here?)

Surface codes have a high
error-correction threshold of
about 1%.
New LDPC codes have a better
encoding rate than

𝑘
𝑛 + 𝑐

= 𝑂( 1
𝑑2)

for 𝑐 ancilla measurement
qubits.
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Surface codes

How to compute with surface codes



Logical single-qubit operations

▶ We have seen how to perform logical
̄𝑍 = 𝑍2𝑍5𝑍8 and 𝑋̄ = 𝑋4𝑋5𝑋6.

▶ Measuring the state in 𝑋/𝑍 basis can be
performed by physical 𝑋/𝑍 measurements
on each qubit.

1 2 3

4 5 6

7 8 9

16



Logical single-qubit operations

▶ We have seen how to perform logical
̄𝑍 = 𝑍2𝑍5𝑍8 and 𝑋̄ = 𝑋4𝑋5𝑋6.

▶ Measuring the state in 𝑋/𝑍 basis can be
performed by physical 𝑋/𝑍 measurements
on each qubit.

1 2 3

4 5 6

7 8 9

16



Surface code architecture

Figure: By tiling patches in the plane we can make an architecture out of surface codes.
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Interacting surface codes with lattice surgery

𝑋̄

̄𝑍1
̄𝑍2

Figure: A joint 𝑍𝑍 measurement by horizontal merge.

We can perform an 𝑋𝑋
measurement vertically.
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Figure: A joint 𝑍𝑍 measurement by horizontal merge. We can perform an 𝑋𝑋
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Multiqubit measurement
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Figure: An 𝑋𝑋𝑋 measurement by merging
multiple patches [Aus19].

▶ We can do more complicated lattice
surgery ⟹ optimizations for
particular operations!

▶ But two-qubit lattice surgery is
sufficient to implement a CX gate
(cnot).

▶ With some additional tricks we can
implement all Clifford gates.
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Figure: An 𝑋𝑋𝑋 measurement by merging
multiple patches [Aus19].

▶ We can do more complicated lattice
surgery ⟹ optimizations for
particular operations!

▶ But two-qubit lattice surgery is
sufficient to implement a CX gate
(cnot).

▶ With some additional tricks we can
implement all Clifford gates.

19



Multiqubit measurement

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0> |0> |0> |0> |0>

a)

b)

bZ1

aX1

cX2

dZ2

fZ3

eX3

bfZ13

aX1

cX2

dfZ23

eX3

aceX123

MZc)
bfgZ1

aX1

cX2

dfhZ2

Z3

eX3

MZ
MZ
MZ
MZ

MZ
MZ
MZ
MZ
MZ

MZ
MZ
MZ
MZ
MZ

MZ
MZ
MZ
MZ
MZ

MZ
MZ
MZ
MZ
MZ

MZ
MZ
MZ
MZ
MZ

MZ
MZ
MZ
MZ
MZ

MZ
MZ
MZ
MZ
MZ

MZ
MZ
MZ
MZ
MZ

MZ
MZ
MZ
MZ
MZ

MZ
MZ
MZ
MZ
MZ

MZ
MZ
MZ
MZ
MZ

MZ
MZ
MZ
MZ

MZ MZ MZ MZ MZ

Figure: An 𝑋𝑋𝑋 measurement by merging
multiple patches [Aus19].

▶ We can do more complicated lattice
surgery ⟹ optimizations for
particular operations!

▶ But two-qubit lattice surgery is
sufficient to implement a CX gate
(cnot).

▶ With some additional tricks we can
implement all Clifford gates.
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Figure: An 𝑋𝑋𝑋 measurement by merging
multiple patches [Aus19].

▶ We can do more complicated lattice
surgery ⟹ optimizations for
particular operations!

▶ But two-qubit lattice surgery is
sufficient to implement a CX gate
(cnot).

▶ With some additional tricks we can
implement all Clifford gates.
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Elementary operations
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Figure: Elementary operations on a surface code architecture [BKS22].
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Bell state preparation

Figure: Bell state preparation using either 𝑍𝑍 or 𝑋𝑋 measurement.
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CX gate

Figure: Using an ancilla in |+⟩ we can perform a CX gate.

Question
How can the qubits be laid out to do the 𝑍𝑍 and 𝑋𝑋 measurements?
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Figure: Using an ancilla in |+⟩ we can perform a CX gate.

Question
How can the qubits be laid out to do the 𝑍𝑍 and 𝑋𝑋 measurements?
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Long-range CX gate

(a) CX via Bell state

(b) Longer-range Bell preparation

Figure: Iterating longer-range Bell preparation gives a construction for a long-range CX.
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Long-range CX gate

(a) CX via Bell state (b) Longer-range Bell preparation

Figure: Iterating longer-range Bell preparation gives a construction for a long-range CX.
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Long-range CX on architecture
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(b) Consume Bell pairs and apply CX

Figure: Long-range CX via iterated longer-range Bell preparation.
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Long-range CX on architecture
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(b) Consume Bell pairs and apply CX

Figure: Long-range CX via iterated longer-range Bell preparation.
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cnots connected by edge-disjoint paths

Assume 1 ∶ 3 data qubit (black)
to ancilla (gray/white) ratio.

Theorem ([BKS22])
Execute all cnots connected
via edge-disjoint paths in
depth 4.
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Fragment paths

▶ Fragment edge-disjoint
paths into two sets of
vertex-disjoint paths.

▶ Label each path at a
crossing with {1, 2}.
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Two-stage parallel cnot execution

Figure: Edge-disjoint paths are fragmented into two sets of vertex-disjoint paths.
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Surface codes

Decoding errors



Linking up errors and decoding

1 2 3

4 5 6

7 8 9

X

Figure: An 𝑋5 error flips two 𝑍-syndrome
measurements.

1 2 3

4 5 6

7 8 9

𝑍 𝑍

Figure: Two errors 𝑍4𝑍5 flip two syndromes
and can be corrected!

Question
Why would applying 𝑍1𝑍2 just as well correct errors in 𝑍4𝑍5?
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Conclusion

You have learned about:
1. Classical linear codes
2. Quantum stabilizer codes
3. Surface codes and operations
4. Decoding errors on the surface code

There is a Google group (TQEC design
automation) started by Austin Fowler to
develop tools for compilation. It
includes recordings of helpful lectures.

There’s a lot more to quantum error
correction!
▶ Fault-tolerance (how do we make

sure errors do not propagate in bad
ways)

▶ LDPC codes and other high-rate
codes

▶ Decoding algorithms
▶ Compiling of quantum algorithms to

a QEC architecture
▶ Universal computation using magic

state distillation
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Topological quantum error correction

Figure: Evolution of magic state factories [Cra19].
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