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Day 10: Topological Aspects of Quantum
Algorithms and Computations

* Quantum error correction:
* Emergent quasiparticles, topological field theories
* A potential topology underpinning discrete-logic

* Topologies of logical computations

» Unitary maps (real time evolution), flow field, and fixed points
* Measurement and imaginary time evolution

* The computation of a dynamical & topological phase transition in a
guantum field theory on a quantum computer.



Topological Field Theories

e Categorical functors (maps on objects) define
topological processes. Exchange Statistics is
Topological Data

* Types: Particles with various charges
* {ap =1,a,b,..., 7}

* FusiontaXb =@ N;,c=bXxa
* Anti-particles: Va 3 a with fusion

e F-MatrixX: encodes change of basis coefficients

: b
* aXa=®cuap,.Naa¢=1+BcNgq
* Abelian anyon fusion is deterministica X b = ¢ e R matrix: — Rab
* Total Quantum Dimension D = /Zidiz \ : c

e Abeliananyonsd; =1
* Non-Abeliananyonsd; > 1
* Birthmap:1 — a X a topological degeneracy
* Death map:a X a — 1 topological degeneracy
* Intrinsic Internal Topological Twist:
87 ={1,—1, ...} for bosons, fermions, ...
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Abelian Anyonic Data e e

e D(Zs) or Toric Code :
Simple Obj : {1,e,m,em} 1 1 1 1
Fusion: eRe=m@®m=em®@em=1, e®m=em eRem=m mQRem =e

Quantum Dimension = 1 (for each simple object) 1 1 1 —_ 1 —_ 1
Twists: 8(ePm?) = (—1)P9 —_

e D(Z4) or Z, Toric code: SD(ZZ) B 2 1 - 1 1 - 1

Simple Obj : {1,¢,€?, €3, m,em, e?m, e>m, m?, em?, e2m?, e3m?, m3, em3, e?m3, e3m?} 1 1 1 1

Fusion: similar to Toric code, e*m® ® e®m? = e@+¢ mod 4pb+d mod 4

Quantum dimension = 1 (for each simple object) 1, e, m, em = € em = €

Twists: 0(ePm9) = P4

e D(Zy) or Zy Toric code:

Simple Obj : {em® :0 < a,b < N — 1}

Fusion: eamb ® ecmd — ea+c mod Nmb+d mod N — _1
Quantum dimension = 1 (for each simple object) e m

Twists: 0(ePm) = e27ira/N

e Semion MTC:
Simple Obj : {1, s} .
Fusion: s®@ s =1 e S-Matrix: se =%chcTr[RgbR?a]
%“?I}Gtmg (d;mer,lsmn: 1 (for each simple object) Topological braiding matrix: a non-local scattering process
WISUS: S)=1

e Doubled Semion MTC:

Simple Obj : {1, s, 5, s5} Sab —_ D_l X
Fusion: s s=5®5=55®@s5=1, s®5=855 s®s5=35, 5®85=35 a b

Quantum dimension: 1 (for each simple object)
Twists: 0(s) =14,6(5) = —1,0(s5) =1



Ising Modular Tensor Category

a =d,

Particles/Simple Objects/Labels: {1, 0,1}
Fusion:

e IXv=v Vv

e oXo=1+4+Y g J o g

c oXyY=yYXo=o0 — pPOO

cYxy =1 1
Dimensions: c=1 c=1

« dy=dy=1d, =V2

« d(2N —2N—dN bit .

( O-anyons? i.e.Npairso(faqu IS) R-matrlces Rlplp 1

Topological Twists: RI% =

27Ti

c 9(1) = 1,0(0) = 5, () = —1

11 V2 o1
5=5\/§ 0 2
1 V2 -1

e 8R¢ =e 8;Rm/’ Rlpa

N
=e ™/ WWA
Y
c lo o c
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* d—code distance
* Hamming weight of largest correctable error
* no-cloning theorem constrains distance
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Quantum Code: A Partitioning
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Constraints as linear maps

Def: A (stabilizer) constraint C;: H; — Z, is a linear mapping from an underlying Hilbert space #; to
a measurement result (of dimension p)

Examples:

A constraint C; := C? > Z, = (ai“) = +1 specifies the it" qubit’s state.
Z|)y = (=1[i)

B _ 10y £ 1)
X[£) =%|+) =+
. |0) +i]1)
Y|+i) = £[+) ==+ >

Consider a single two-qubit constraint: C; := C*> @ C? - Z,
< UE(X,Y,Z} VE{X,Y,Z}>
o, g,



Bell Basis Encoding and Measurement
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(Z1Z7)

(X1X2)

= Bell basis measurement

e



Eigenvalues of Pauli-product operators
- XNVA§=§;Z ® Xsy ® Xwy
= Xk1) Q@ Xk,7) Q Xk11) & Xk 5)

X|—e e
0 1 -|: ¢ 1A |
4 = 4
\ *—
5 —4J |
J MX1X2 l = l
| O—O——0 > o o o x|
10 11 (X1X2>
B, = Zy ®Zs, @ Zs, ® Zy diag(Z) =1{1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1, -1}
B . Z HZ \Y% Z H g X dlag(Z]) = {1) 1) 1) 1) _1, _1, _1, _1, 1, 1, 1, 1, _1, _1, —1’ —1}
7= 20 @ Zean ® Lazin © Loz x diag(Z,) ={1,1,-1,-1,1,1,-1,-1,1,1,-1,-1, 1, 1, -1, -1}
Bp=Zl®Z]®Zk®Zl ’ ’ ’ ) ’ ’ ) ) ) ) ) ) ) ) )

x diag(Z;)={1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1, -1}

""""x\\\\ = dlag(Bp) - {1; ’ ’ 1; ’ 1; 1; ’ ’ 1; 1) , 1’ , , 1}
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Toric presentation #1: Electromagnetic lens

* Unit cell coordinates and binary variable index
* Qubits: {iy, jy, V or H}
* V, Hconsidered a unit lattice d.o.f. (sublattice)
(stabilizers) interaction coordinate: {iy, j,, V or p}

* X-type:if +1 charge e vacuum, , _ RIRQRXKXX
, =

. if -1 charge e present
e Z-type: if +1 flux m vacuum, B, =ZQZQRZQZ
. if -1 flux m present
* By duality Z; creates/moves charges. (and X; for fluxes)
*H = — ZvAv _Zpo
* Particles:

* Charges e reside on lattice vertices and move along the edges.
* Move along the principal lattice; denoted by solid lines
* Fluxes m reside on plaquettes (i.e. dual lattice verticies)

* [[# of physical qubits, # of logical qubits, code distance]] = [[n, k, d]]
+ [12N%, 2,5 —1]]

1,
-
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i, =0,
iy =0
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Toric presentation

e Lattice (G = (V,E))
* Coordinates (ix,jy) < (ZLx’ ZLy)

* Periodic boundaries (L, j) = (0, ), (i, Ly) = (i,0)

e Stabilizers/Interactions/Symmetries coordinate:
e X-type interaction centered on vertices v € V

* indexed by coordinates (ix,jy) = kyy =iy + Lyiy,

» Z-type interaction centered on plaquettes p are centered

on the

* Qubits therefore live on the edges E
* Vertical edges Ey € {(i,), (i,j £ 1)}
 Horizontal edges Ey € {(i,j), (i +1,j)}
* V, H considered a unit cell (sublattice) degree of freedom

Ly=5L, =3

1: Indices Revisited

Unit cell
17 @ 1 2 : 4
W p
5 ——4 Q@
SIEE
10 11 12 2 14

AU’=k=6 = XNV ® XEH ® XSV ® XWH
= Xk1) Q@ Xk,7) Q@ X(k11) & X5

0 1 2 3 4
5
6 7 @ 8 9
B
(7)
10 11 12 0 13 14

By =Zny ® Zpy & Zs, Q Zwy
B = Z(7,8) ® Z(8’13) ® Z(12,13) ® Z(7!12)
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i.e., the qubit sublattice ’I‘ _
@ supporting a logical operator
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Unpacking code representations: X-Z and the unit cell(s)
i,=0,.. v Ly —1

1
®p |

* Boundaries: Vi
* Rough (x-type) \'

e eo>1lm-m

* Smooth (z-type)

e e—>em-1

v

Vi cis Va2
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* Lattice surgeries V;

« (Dis)connect rough and  [[2N?, 1,% — 111 [[2N?, 2,% —1]] 1
smooth to (un-)fold toric
code

* Reorient rough and smooth
for surfaces codes

* Bravyi, Kitaev 1998
* Multi-genus objects
* Y-handled torus

* X punctured surface
code

* Twistors
* Physical (Dehn) twist
» Algebraic (later) twist

/N /N
<4

m
AU = XNH ® XEV ® XSH ® XWV

Bp = ZNH ® ZEV ® ZSH ® ZWV

-2

Np%}
va,




/XXZ Presentation: A symmetrized Toric Code

1. Rotate lattice by + %

N
2. Apply H®>

Where are the Qubits?
* Previously on edges of dashed lines

* Now on vertices of chessboard
lattice

What are the Excitations?

* Chargese

* Previously on lattice vertices
(dashed lines)

*  Now Black Bishops
* Fluxesm

* Previously on inscribed white
plaquettes

*  White Bishops
A la Google paper
w npB —
(Br !Br+i) =€
exXm=e




Algebraic Twist

H. Bombin. Topological order with a twist: Ising
anyons from an Abelian model. Physical Review Let-
ters, 105(3):030403, jul 2010. ISSN 00319007. doi:
10.1103/PhysRevLett.105.030403. URL https://link.
aps.org/doi/10.1103/PhysRevLett.105.030403.

K

Condensed fermion!
Chiral logical operators!

The Twist

~

Gauging a D=1 defect into D=2 Toric code
Barkeshli et al 22 arxiv.:2208.07367



Toric code with a twist(ed qubit)

Deconfined quasiparticles
o Charges hop between vertices via principal lattice
¢ Fluxes hop between plaquettes via dual (---)lattice

. .
........................................

..............................

-------------------------




P1
P2

— AN
(X1Z3) = +1

el g i)
S ={4,,B,,A,B,}

code deformation via measurement

S' = {ZX,A,B,, ZXA,B,}



%, Zig-zag measurement ~ a rough-rough
X boundary functor, condensing em = I
That is, e and m annihilate at this internal
topological deformation

1
3
Q.4

i
L)

X
;
(X)

3

Anirudh Krishna and David Poulin. Topological wormholes: Nonlocal
defects on the toric code. Physical Review Research, 2(2), 2020.
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Toric code with a twist(ed qubit)

4

Deconfined quasiparticles include:

”

o Charges hop between vertices via lattice “streets
o Loop action of Z-type

¢ Fluxes hop between plaquettes via dual lattice
¢ Action of X-type

o

+
-------------------

ATELC)
| A ’ ¢

by
.........................................

Logical Operators

* Logical Z ||

to twist

* Logical Y 1 to twist

Yut = Z_nt = \P?utz_nt €1

ZLXE = 4T
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FIG. 10. (i) Embedding Bombin’s lattice into Kitaev’s, (ii)Twist operators for Z, and (iii) Zn

FIG. 1. Deformations of the surface code. a, Stabi-
lizer codes are conveniently described in a graph framework.
Through deformations of the surface code graph, a square grid
of qubits (crosses) can be used to realize more generalized
graphs. Plaquette violations (red) correspond to stabilizers
with s, = —1 and are created by local Pauli operations. In the
absence of deformations, plaquette violations are constrained
to move on one of the two sub-lattices of the dual graph in the
surface code, hence the two shades of blue. b, A pair of D3Vs
(vellow triangles) appears by removing an edge between two
neighboring stabilizers, S, and S, and introducing the new
stabilizer, S = S152. A D3V is moved by applying a 2-qubit
entangling gate, exp(% (S, S’]) In the presence of bulk D3Vs,

there is no consistent way of checkerboard coloring, hence the
(arbitrarily chosen) gray regions. Top right: in a general stabi-
lizer graph, S'p can be found from a constraint at each vertex,
where {m1, 72} = 0.

zt
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a € b Step Gate I)‘(' Xl ¢ Non-local f.ermion
1 IS U(Xz422,) /A il detection
S i & X M-IV | U(Xp0Z,5) — HEED
VII=IX| U(Z,5%,)
IX=X | Uu(Z52X54) v v
- (|S|>=088+005
Vv VI VIl
1'... 1'.'. @)= (P)=(zx.2)
o WIA'L, '_’ . /‘v ) =-0.85+0.01
= Hhkd @Gukd @@= [/
HEN A BEE LT
v A 2w W w v w
Y WY Y WY Wl Y WY
(HIEEN (JUEN GIIII (BUEN
HERED_ RN lrEIID W‘l Py =P)=(2x.2)
e fetn v (HHEE ~GEEE ~@EdE ~ @EEd = +0.84.£ 0,01
ala HEEE) HEEEE) EEEER EEED (stabilizer)
v v v v v w v v [ |
1 (IS1)=0.94 £0.04 @:Zgate [@: X-gate A:D3V -1.0 0.0 1.0

FIG. 2. Demonstration of the fundamental fusion rules of D3Vs. a, The braiding worldlines used to fuse £ and o.
b, Expectation values of stabilizers at each step of the unitary operation after readout correction (see Fig. S3 for details and
individual stabilizer values). We first prepare the ground state of the surface code (step I; average stabilizer value: 0.94 £+ 0.04).
A D3V (o) pair is then created (II) and separated (I11I-IV), before creating a fermion, € (V). One of the plaquette violations
is brought around the right o (VI-VIII), allowing it to annihilate with the other plaquette violation (VIII). The fermion has
seemingly disappeared, but re-emerges when the ¢ are annihilated (XI; stabilizer values: -0.86 and -0.87). The path V—VIII
demonstrates the fusion rule, ¢ x ¢ = ¢. The different fermion parities at the end of the paths VIII—XI and IV—I show the
other fusion rule, o X ¢ = 1 + €. Yellow triangles represent the positions of the o. The brown and red lines denote the paths of
the o and the plaquette violation, respectively. Red squares (diamonds) represent X- (Z-) gates. Upper left: table of two-qubit
unitaries used in the protocol. ¢, Non-local technique for hidden fermion detection: the presence of a fermion in a o-pair can
be deduced by measuring the sign of the Pauli string P corresponding to bringing a plaquette violation around the o-pair (gray
path). P is equivalent to the shorter string 7’ (black path). Measurements of P’ in steps VIII (top) and IV (bottom) give values
—0.85+0.01 and +0.84 4 0.01, respectively. This indicates that there is a hidden fermion pair in the former case, but not in the
latter, despite the stabilizers being the same. 2210.10255
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Braiding indistinguishable, non-Abelian D3Vs Step Gate Control: distinguishable D3Vs
e € - a & X & & X & & 150 |[UZX) S 1 1 9 .
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FIG. 3. Braiding of non-Abelian anyons. a, Wordline schematic of the braiding process. b, Experimental demonstration of
braiding, displaying the values of the stabilizers throughout the process. Two o-pairs, A and B, are created from the vacuum 1,
and one of the ¢ in pair A is brought to the right side of the grid. Next, a ¢ from pair B is moved to the top, thus crossing the
path of pair A, before bringing o-pairs A and B back together to complete the braid. In the final step, two fermions appear in
the locations where the o-pairs resided, constituting a change in the local observables. The diagonal o move in step IV requires
two SWAP-gates (3 CZ-gates each) and a total of 10 CZ-gates. The three-qubit unitary in step VIII requires 4 SWAP-gates and
a total of 15 CZ-gates. In the full circuit, a total of 40 layers of CZ-gates are applied (see Supplementary materials). The yellow
triangles represent the locations of the o; the brown and green lines represent the paths of ¢ from pair A and B, respectively.
c, As a control experiment, we perform the same braid as in a, but with distinguishable o by attaching a plaquette violation to
the o in pair B (represented as purple triangles). d, Same as b, but using distinguishable o (only showing steps I, IV and XII).
In contrast to b, no fermions are observed in step XII. 2210.10255



Logical operators

Y =X 4,

= Bulk D3V pair 1
mee Bulk D3V pair 2

Entangling protocol: single exchange of D3Vs Quantum state tomography
b Vi
AL OH D
Step Gate
=11 | U(X54Z55)
=1V | U(X3,Z53)
V=V 1UW(Z5,4X5,5)
V=VE | U(Z5X50)
VI=VIE (U (Z;5X, 4)
(Stabilizer)

(ISI)=0.95 + 0.04

FIG. 4. Entangled state of anyon-encoded logical qubits via braiding. a, Logical operators of the three logical qubits
encoded in the 8 anyons (other basis choices are possible). The colored curves in the left column denote plaquette violation paths,
before reduction to shorter, equivalent Pauli strings measured in the experiment (right column). b, Worldline schematic of the
single exchange used to realize an entangled state of the logical qubits. ¢, Single exchange of the non-Abelian anyons, displaying
measurements of the stabilizers throughout the protocol. Yellow triangles represent the locations of the o, while brown and
green lines denote their paths. The average absolute stabilizer values are 0.95 £ 0.04 and 0.88 4 0.05 in the first and last step,
respectively. d,e, Real (d) and imaginary (e) parts of the reconstructed density matrix from the quantum state tomography.
Re(p) has clear peaks in its corners, as expected for a GHZ state on the form (]000) 4 |111))/+v/2. The overlap with the ideal
GHZ-state is Tr{pcuzp} = 0.623 & 0.004.

2210.10255



Topology of dynamics: (complex) time-evolution

* State’s rate of change defines field lines in Hilbert space.
* |¥) was a vector, so is |¥) = d0:|¥) = a% W) = %H(t)l‘ll)

* For (real-time evolution) Unitary operator (in spectral basis):
* Field lines orbit the eigenstates (which are fixed points)

* For Imaginary-Time evolution operators or Measurement gates
* Field lines flow towards measurement basis (which are fixed points)

* Dynamical Quantum Phase Transition
* Brief technical encoding of problem
* Fermionic topological invariants encoded in topology of dynamical manifold

* momentum-frequency (k, w) space

* Topological invariant is the number of poles in the manifold defined by the dynamical quantum Green’s (a.k.a. propagation or
correlation) function

* Diagonalization of free-theory and experiment
e Calculation of topo invariant
* Take home assignment, do this for 2, 4 lattice sites (4, 8 qubits)



Unitary vs Non-Unitary Time Evolution
-- example with one-qubit SU(2, C) “gates”

e SU(2) basis: X,Y,Z, 1

* Generators: G = vyl + v X +
v,Y + v3Z, v € C*

* Time (t) evolution operator
generated by G: e UG
e Unitary: v € R*
 Non-unitary: ¥ € C*\R*

* Non-unitary =2 unitary

(measurement postulate):

Valid Quantum Map on p = |[Y)|

o . T
e ltGpeltG

Tr(e—it(G—GT)p)

Unitary Gates Non-Unitary Gates

U= (0,1,0,0) — X’\/Y
P Y gates

7 AN

gates

Orbits of unitary gates vs non-unitary gates
(see also: A. Galda and V.M. Vinokur, “Linear dynamics of classical
spin as Mébius transformation,” Sci. Rep. 7, 1168 (2017).




The Only Quantum Circuit You’ll Ever Need T+ 7

X-(UFZ) =X+iY = +2) X 5
e B
: U+V
| | l> = — — U_|_
‘l>ﬂ | H N ¢ H | /’74 _ UEV o
| | ) — —— = U_
| |
Ut |¥)
) +—X— | :
W) XA £ o)]
time : Note the state-dependent
weighting factors
Ui )]
_I_ —
oo U 1D DIRD!
)01 111 _ID—H I H— N T A
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Figure 8.5. Controlled-NOT gate as an elementary model of single qubit measurement.
U = (0p05)(0p05] +|0p1)(0p1 5]+ [1p1x)(1p0p] + [1p0) (1p1s] . (8.24) —
Thus 0
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Quantum Computation of Topological
Invariant

 Computing a topological invariant, but now, in the language of a
guantum computer.
* Topological Dynamical Quantum Phase Transition (TDQPD)

d In d f|e|d theory (https://journals.aps.org/prl/abstract/10.1103/PhysRevlett.122.250401)

 Minimal Experimental Data (PRXQuantum.4.030323)

Dynamical Quantum Phase Transition

Skip technical encoding of problem

Fermionic topological invariants in (k,w) space
Poles in dynamical manifold of the quantum (Green’s)
correlation function
Diagonalization of free-theory — experiment
Take home assignment, do this for 2, 4 lattice sites (4,
8 qubits)

Calculation of topo invariant


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.250401

PRX QUANTUM 4, 030323 (2023)

Quantum Computation of Dynamical Quantum Phase Transitions and
Entanglement Tomography in a Lattice Gauge Theory

Niklas Mueller®,'23-" Joseph A. Carolan,* Andrew Connelly®,* Zohreh Davoudi®,!¢-f
Eugene F. Dumitrescu,”* and Kiibra Yeter-Aydeniz®
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Strongly coupled gauge theories far from equilibrium may exhibit unique features that could illumi-
nate the physics of the early universe and of hadron and ion colliders. Studying real-time phenomena has
proven challenging with classical-simulation methods, but is a natural application of quantum simula-
tion. To demonstrate this prospect, we quantum compute nonequal-time correlation functions and perform
entanglement tomography of nonequilibrium states of a simple lattice gauge theory, the Schwinger model,
using a trapped-ion quantum computer by IonQ Inc. As an ideal target for near-term devices, a recently
predicted [Zache et al., Phys. Rev. Lett. 122, 050403 (2019)] dynamical quantum phase transition in
this model is studied by preparing, quenching, and tracking the subsequent nonequilibrium dynamics in
three ways: (i) overlap echos signaling dynamical transitions, (ii) nonequal-time correlation functions with
an underlying topological nature, and (iii) the entanglement structure of nonequilibrium states, includ-
ing entanglement Hamiltonians. These results constitute the first observation of a dynamical quantum
phase transition in a lattice gauge theory on a quantum computer, and are a first step toward investigating
topological phenomena in nuclear and high-energy physics using quantum technologies.
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II. QUANTUM COMPUTING DYNAMICAL
QUANTUM PHASE TRANSITIONS

Consider the massive lattice Schwinger model with the
Hamiltonian

| Mol N-1 ge2 V7!
Hm) = o= 3 WUylner +He) +m Y (D" + ==Y E;
n=0 n=0 n=>0

on a one-dimensional (spatial) lattice with N sites and
periodic boundary conditions (PBCs), with mass m,

electric coupling e, and lattice spacing a. w,j and ¥,
denote creation and annihilation operators for the (stag-
gered) fermions, respectively. U, is the link and E, the
electric field operator, satisfying the commutation rela-
tion [E,,U,] = 8,mU4,. The Hamiltonian commutes with
Gauss’s law operator at each site, G, = E, — E,_1 — Q,,
where

1
Qn =Y Yn — S = 1] (2)

1s the staggered fermion charge. The gauge-invariant
physical Hilbert space contains states that satisfy
Gyl )"™* = 0.



Topological Dynamics

Adding a topological 6 term ef /27 ), E, to Eq. (1),
and upon performing a chiral transformation to absorb
the 6 parameter into a (complexified) fermion mass term,
yields the Hamiltonian [183—188]
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Att=0m — —m temporal band
inversion. Winds the quantum
state space. Band inversion is a
typical ingredient in the generation
of topological phases in condensed
matter physics.

Mapped onto a long-rage interacting
fermionic model. (1D Model)

Explicitly, in the purely fermionic form, U, is set to one
in Egs. (1) and (8), and the electric field term in Eq. (1) is
replaced by a (translation-invariant) long-range fermionic
density-density interaction [148,196]
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(12)
The resulting Hamiltonian reads
H(m) = Ho(m) + H, (13)

with A, defined above and

N—1
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n=0 n=0

being the noninteracting fermionic part of the Hamiltonian.

L) = (W(0)|W(£)) = (GS(m)|e ™ “™"|GS(m)), (5)

from which one can define an intensive rate function,

1
r@ = lim {—Nlog(w(r)n}. ©)

The nonanalyticities of Eq. (6) correspond to DQPTs and
can be extracted on lattices as small as four to eight sites
with small finite-volume effects in the e/|m| < 1 regime
[148]. The second quantity is a set of nonequal-time corre-
lation functions (NECFs), defined in the staggered lattice
formulation as

Nl
gq0=3 g ghnl, @
j=0
where g € [-(N/4),(N/4) — 1] and

g™ (1) = (W], o1, Uy 54100 Oy (0)), (8)

with (...) = (GS(m)|...|GS(m)) and U,.(@) =]}
Ui(t) U, = 1). From g,(7), an integer-valued topological
order parameter can be extracted [195]

v(B) = n_(t) — ny (), ©)
where
1 "
n=5-¢ g, (10)
C()

Here, z=(¢,), g =g,;(), and g, =g,/|g,]. Con-
cretely, Ci(f) runs clockwise (counterclockwise) in
the positive (negative) half of wave numbers ¢ in
the (q,7) plane, ie., Ci(?):(0,0) > (N/4—1,0) —
(N/4—1,t) = (0,£) — (0,0) and similarly for C_(¢).
Note that # is continuous and g is discrete, hence integral
and derivative become a sum and finite difference along
the g sections of C.(7). Equation (9), which is valid at
arbitrary coupling e, changes by an integer whenever the
system undergoes a dynamical quantum phase transition.
We refer the reader to Ref. [148] for more details, and here
we focus on a quantum computational representation of the
topological phenomenon.



Time tm

0 2 an OO
Momentum k/m Momentum k/m

FIG. 1. Phase of the time-ordered correlator [Eq. (2)] after €
quenches at vanishing gauge coupling. The real-time evolution
of the phase exhibits qualitative differences when the quench is
weaker or stronger than the critical value A, = 7 /2, exem-
plified here for A@ = 045z (left) and AO = n (right). The
phase is analytic for small quenches (|Af| < Af,.), while for
large quenches (|A6| > A0,) vortices form at (+k., tE-”)). The
integration path C_(f), here shown for tm =9, encloses a
discrete number of vortices (marked by yellow circles), leading
to integer increments of the topological invariant v as time
progresses (see Fig. 2).
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FIG. 2. Dynamical topological transitions at vanishing gauge
coupling. (a) The topological invariant exhibits jumps at critical
times 1" = (2n — 1)x/[2w(k.)] with n €N, if |A0] > x/2,
while the dynamics is topologically trivial for |Af| < z/2.
(b) For |A@| > r/2, the rate function [Eq. (5)] shows nonanalytic

kinks at times rE;”).
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FIG. 1. (a) Implementation strategy to prepare ground state of the noninteracting Schwinger model and simulate nonequal-time

evolution after a quantum quench, involving basis changes V' from position to momentum space. Free (Hy) and interacting (H;)
parts of the time evolution are performed in a diagonal basis. The quench from m to —m is achieved via a basis transformation
from the vacuum of the free theory in momentum-space computational basis with mass m to that with mass —m. (b) Interferometry
schemes, employed to compute Loschmidt echo L(?) [Eq. (5)] and NECFs g,(?) [Eq. (7)], include a symmetry-based error-mitigation
scheme. (¢) Entanglement tomography scheme to extract Rényi entropies, fidelities, as well as the reduced density matrix p4 () from

an entanglement Hamiltonian ansatz that is constrained by a classical optimization based on a number of random measurements.
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FIG. 2. (a) Real (solid line, dark-colored symbols) and imagi-
nary (dashed line, light-colored symbols) parts of the Loschmidt
echo L(t) from an ideal simulator (blue circles) versus error-
mitigated results from lonQ Harmony (red squares), for N = 4
sites, e = 0 and |m| a = 0.9. (b) Rate function I'(f) reconstructed
from the same data. The bottom panels show the number of
shots resulting in a physical, i.e., occupation-number symmetry-
preserving result (red bars) versus all results (gray bars).
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FIG. 3. (a) Real (solid line, dark-colored symbols) and imagi-
nary (dashed line, light-colored symbols) parts of the Loschmidi
echo L(t) from an ideal-simulator (blue circles) versus error-
mitigated results from IonQ Harmony (red squares), for N =
8 sites, e=0 and |m|a = 0.8. (b) Rate function (1) recon-
structed from the same data. The bottom panels shows the
number of shots resulting in a physical, i.e., occupation-number
symmetry-preserving result (red bars) versus all results (gray
bars).
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Topological index v(¢), computed via Egs. (9) and (10)

from g,(f) (Fig. 6), for (a) N =4, |m|a = 0.9, and (b) N =8,

|m|a = 0.8. Exact results are black lines, simulator results are
blue symbols, and IonQ results are red symbols. Horizontal

dotted-dashed gray lines indicate the possible integer values v (7)

can take.
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FIG. 5. (a)Loschmidt echo L(¢) from an ideal simulator (blue)

versus error-mitigated results from IonQ Harmony (red), for N =
4 sites, [m| a = 0.9 at finite coupling e/|m| = 1, using a one step
Trotter scheme. (b) Rate function I'(£), with bottom panels show-
ing physical (red), i.e., occupation-number symmetry respecting
results, versus all results (gray).



III. ENTANGLEMENT TOMOGRAPHY

Entanglement structure and state fidelity of nonequilib-
rium states can be obtained following Refs. [159,163—165,
168], based on random measurement. Our circuit-based
approach is summarized in Fig. 1(c). One can compute
Rényi entropies and fidelities, and reconstruct the reduced
density matrix using a generalization of the Bisognano-
Wichmann (BW) theorem [179,180]. The second-order
bipartite Rényi entropy is

SP (1) = —logy {Tra(p2 (0}, (22)

The reduced
density matrix p4(¢) of system A is reconstructed using
the entanglement Hamiltonian tomography (EHT) proto-
col of Ref. [168], based on the BW theorem [179,180]
generalized to nonequilibrium states. To do so, p,(¢) is
parametrized as [209]

pa(t) = e 40, (25)
in terms of an entanglement Hamiltonian (EH),
Hy(f) = Hy(t: (B i) = Y B (OH; + > 1 (OT;.
jed

Jjed
(26)

Inspired by the BW theorem, H; are the local operators in
Eq. (13) (“energy densities”) and 7; are commutators of the
latter. In practice, at e = 0, these are

Hy = (= 1) Y, ¥ ni1 + Hell,

(27)
T; = {(i(W) Y1 — Hee), i 0,00 + Heel),
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FIG. 8. The top panel shows Rényi entropy averaged over sub-
systems A and B, S? (1) = (1/2)(SP (¢) + S5 (1)) [with S and
similarly Sg) defined in Eq. (22)], for N =4, |m|a = 0.9,e = 0,
neue = 25, and nghos = 1000, including simulator (blue sym-
bols) and IonQ (red symbols) results. The middle panel depicts
fidelity F () [Eq. (23)]. The bottom panel shows the Rényi
entropy of the full system, Sf(a)_ » (relative to the environment).
Blue horizontal lines in the middle and bottom panels indicate
ideal results, and a horizontal red line indicates zero fidelity or
maximal entropy (p (£) = I/2"), respectively.

APPENDIX G: FURTHER RESULTS ON
ENTANGLEMENT TOMOGRAPHY

The results of the entanglement tomography analysis for
the largest system with N = 8 lattice sites are presented in
this Appendix. The significant gate count, as evident from

4 random / complete decoherence
- i =3 m
=
3
= $  simulator
%) 24 @ IonQ
1+
e/lm| =0
163
. oidea?/ et T T
io.r)
NCUE — 25
0.04=mendom / complete decoherencg,
754 Ttandom / complete decoherence
50
=
EADYES - & =
0.0 ideal / isolated
0.0 0.5 1.0 1.5 2.0
t|m|

FIG. 18. The top panel shows Rényi entropy averaged over
subsystems 4 and B, S@ () = (1/2)(S? (1) + S$ (1)) [with S
and similarly Séz) defined in Eq. (22)], for N =8, [m|a = 0.8,
e =0, ncyg = 25, and ngors = 1000, including simulator (blue
symbols) and IonQ (red symbols) results. The middle panel
depicts fidelity F(f) [Eq. (23)]. The bottom panel shows the
Rényi entropy of the full system, SﬁB (relative to the environ-
ment). Blue horizontal lines in the middle and bottom panels
indicate ideal results, a horizontal red line indicates zero fidelity
or maximal entropy (p(f) = I/2"), respectively. See Fig. 19 for
a close up of the lower two panels.



summary

* Examined topological features of topological quantum error
correcting code families:
* A topological field theory underpinning discrete-logic
* Emergent quasiparticles in the laboratory

* Topologies of logical computations
* Unitary maps (real time evolution)
* Eigenstates are fixed points and sources of curl for differential flow field

* Measurement and imaginary time evolution
* Measurement settings are

* Algorithms to compute dynamical & topological phase transition in a
guantum field theory.
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