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Day 10: Topological Aspects of Quantum 
Algorithms and Computations
• Quantum error correction:

• Emergent quasiparticles, topological field theories

• A potential topology underpinning discrete-logic

• Topologies of logical computations
• Unitary maps (real time evolution), flow field, and fixed points

• Measurement and imaginary time evolution

• The computation of a dynamical & topological phase transition in a 
quantum field theory on a quantum computer.



• R matrix:

Topological Field Theories

• Categorical functors (maps on objects) define 
topological processes. Exchange Statistics is 
Topological Data
• Types: Particles with various charges

• {𝑎0 ≡ 𝟙, 𝑎, 𝑏, … , 𝑧}

• Fusion: 𝑎 × 𝑏 = ۩𝑐 𝑁𝑎,𝑏
𝑐 𝑐 = 𝑏 × 𝑎

• Anti-particles: ∀𝑎 ∃ ത𝑎 with fusion
• 𝑎 × ത𝑎 = ۩𝑐∈{𝟙,𝑎,𝑏,… } 𝑁𝑎, ത𝑎

𝑐 𝑐 = 𝟙 + ۩𝑐≠𝟙 𝑁𝑎, ത𝑎
𝑐 𝑐

• Abelian anyon fusion is deterministic a × 𝑏 = 𝑐

• Total Quantum Dimension 𝒟 = σ𝑖 𝑑𝑖
2

• Abelian anyons 𝑑𝑖 = 1
• Non-Abelian anyons 𝑑𝑖 > 1

• Birth map: 𝟙 → 𝑎 × ത𝑎 topological degeneracy
• Death map: 𝑎 × ത𝑎 → 𝟙 topological degeneracy 

• Intrinsic Internal Topological Twist:
• 𝜃𝑇 = {1, −1, … } for bosons, fermions, … 

= 𝑅𝑐
𝑎𝑏

𝑐 𝑐

𝑎 𝑏 𝑎 𝑏

• F-Matrix: encodes change of basis coefficients 

=

𝑎 𝑏 𝑐

𝑒

𝑑

𝑎 𝑏 𝑐

𝑒′

𝑑



𝑒′

𝐹𝑎𝑏𝑐
𝑑 𝑒′

𝑒

 



Abelian Anyonic Data

S𝐷(ℤ2) =
1

2

1 1
1 1

1 1
−1 −1

1 −1
1 −1

1 −1
−1 1

𝟙, 𝑒, 𝑚, 𝑒𝑚 = 𝜖 

𝟙

𝑒

𝑚

𝑒𝑚 = 𝜖 

𝑒 𝑒

• S-Matrix:       𝑆𝑎𝑏 =
1

𝒟
σ𝑐 𝑑𝑐 Tr[𝑅𝑐

𝑎𝑏𝑅𝑐
𝑏𝑎]

Topological braiding matrix: a non-local scattering process

𝑆 
𝑎𝑏 = 𝒟−1 ×

𝑎 𝑏

𝑒 𝑚
= −1



Ising Modular Tensor Category
• Particles/Simple Objects/Labels:  𝟙, 𝜎, 𝜓

• Fusion:
• 𝟙 × 𝜐 = 𝜐 ∀𝜐

• 𝜎 × 𝜎 = 𝟙 + 𝜓

• 𝜎 × 𝜓 = 𝜓 × 𝜎 = 𝜎

• 𝜓 × 𝜓 = 𝟙

• Dimensions:

• 𝑑𝟙 = 𝑑𝜓 = 1; 𝑑𝜎 = 2
• 𝑑(2N 𝜎 anyons) = 2𝑁 = d(N qubits)

• i.e. N pairs of 𝜎

• Topological Twists: 

• 𝜃 𝟙 = 1, 𝜃 𝜎 = 𝑒
2𝜋𝑖

16 , 𝜃 𝜓 = −1

• 𝑆 =
1

2

1 2 1

2 0 2

1 2 −1

  

= 𝑅𝟙
𝜎𝜎

𝑐 = 𝟙 𝑐 = 𝟙

𝜎 𝜎 𝜎 𝜎

𝑎 = 𝑑𝑎

Bonderson, K, Shtengel  PRL 2006

R-matrices: 𝑅𝟙
𝜓𝜓

= −1

𝑅𝟙
𝜎𝜎 = 𝑒−𝑖

𝜋

8 , 𝑅𝜓
𝜎𝜎 = 𝑒𝑖

3𝜋

8  ; 𝑅𝜎
𝜎𝜓

= 𝑅𝜎
𝜓𝜎

= −𝑖 



[[n,k,d]] Quantum Error 
Correcting Codes

• n – # of physical qubits 

• d – code distance 
• Hamming weight of largest correctable error

• no-cloning theorem constrains distance 

• k – # of logical qubits 

E
N
C
O
D
E

D
E
C
O
D
E

⊗

n, k, d

۩ error sectors





Constraints as linear maps

Def: A (stabilizer) constraint Ci:  ℋ𝑖 → ℤ𝑝 is a linear mapping from an underlying Hilbert space ℋ𝑖  to 
a measurement result (of dimension p). 

Examples: 

A constraint 𝐶𝑖 ≔ ℂ2 → ℤ2 = 𝜎𝑖
𝜇

= ±1 specifies the ith qubit’s state.
𝑍 𝑖 = −1 𝑖 𝑖

X ± = ± + = ±
0 ± 1  

2

𝑌 ±𝑖 = ± + = ±
0 ± 𝑖 1  

2

Consider a single two-qubit constraint: 𝐶𝑖 ≔ ℂ2 ⊗ ℂ2 → ℤ2

𝜎𝑖
𝜇∈{𝑋,𝑌,𝑍}

𝜎𝑗
𝜈∈{𝑋,𝑌,𝑍}



𝑀𝑍𝑋

Bell Basis Encoding and Measurement

=

=

𝑋

𝑋

𝑋

𝑍

Z

X =

⟨𝑍1𝑍2⟩ ⟨𝑍1𝑍2⟩

⟨𝑋1𝑋2⟩

𝑀𝑋1𝑋2

HH

X

= Bell basis measurement

⟨𝑍1𝑋2⟩
HH

1

2

3

=

⟨𝑍1𝑋2⟩



Eigenvalues of Pauli-product operators

𝑣′ XX

X
X

1

1110

5

0

𝐴𝑣′=𝑘=6

=  𝑋𝑁V
⊗  𝑋𝐸H

⊗ 𝑋𝑆V
⊗ 𝑋𝑊H

=  𝑋(𝑘,1) ⊗ 𝑋(𝑘,7) ⊗ 𝑋(𝑘,11) ⊗ 𝑋(𝑘,5)

𝐵𝑝  = 𝑍𝑁H
⊗ 𝑍𝐸V

⊗ 𝑍𝑆H
⊗ 𝑍𝑊V

𝐵7 = 𝑍(7,8) ⊗ 𝑍(8,13) ⊗ 𝑍(12,13) ⊗ 𝑍(7,12)

𝐵𝑝 = 𝑍𝑖 ⊗ 𝑍𝑗 ⊗ 𝑍𝑘 ⊗ 𝑍𝑙

diag(𝑍𝑖) = {1, 1, 1, 1, 1, 1, 1, 1, −1, −1, −1, −1, −1, −1, −1, −1}

×  diag 𝑍𝑗 = {1, 1, 1, 1, −1, −1, −1, −1, 1, 1, 1, 1, −1, −1, −1, −1}

×  diag(𝑍𝑘) = {1, 1, −1, −1, 1, 1, −1, −1, 1, 1, −1, −1, 1, 1, −1, −1}
×  diag 𝑍𝑙  = {1, −1, 1, −1, 1, −1, 1, −1, 1, −1, 1, −1, 1, −1, 1, −1}
-------------------------------------------------------------------------------------

= diag 𝐵𝑝 = {1, −1, −1, 1, −1, 1, 1, −1, −1, 1, 1, −1, 1,−1, −1, 1}

= +1 ⊕ {−1}

=

⟨𝑋1𝑋2⟩

𝑀𝑋1𝑋2

=

𝑋X

𝑋



V

H

𝑝
𝑣

𝑖𝑥 = 0, 1, … , 𝐿𝑥 − 1

𝐿𝑦 − 1

Toric presentation #1: Electromagnetic lens 
• Unit cell coordinates and binary variable index

• Qubits: {𝑖𝑥, 𝑗𝑦, V or H} 

• V , H considered a unit lattice d.o.f. (sublattice)

• (stabilizers) interaction coordinate: {𝑖𝑥, 𝑗𝑦 , 𝑣 or 𝑝}

• X-type: if +1 charge e vacuum, 

•               if -1 charge e present

• Z-type: if +1 flux m vacuum, 

•               if -1 flux m present

• By duality 𝑍𝑖 creates/moves charges. (and 𝑋𝑖  for fluxes)

• 𝐻 =  − σ𝑣 𝐴𝑣 − σ𝑝 𝐵𝑝

• Particles: 
• Charges 𝑒 reside on lattice vertices and move along the edges. 

• Move along the principal lattice; denoted by solid lines

• Fluxes m reside on plaquettes (i.e. dual lattice verticies)

• Move along the dual lattice; denoted with dashed lines 

• [[# of physical qubits, # of logical qubits, code distance]] = [[𝑛, 𝑘, 𝑑]]

• [[2𝑁2, 2,
𝑁

2
− 1]]

𝐴𝑣  =  𝑋 ⊗  𝑋 ⊗  𝑋 ⊗ 𝑋 

𝐵𝑝  = 𝑍 ⊗ 𝑍 ⊗ 𝑍 ⊗ 𝑍 

𝑣 XX

X
X

𝑝

Z ZZ

Z

𝑒 𝑒−1

𝑚 𝑚−1

V

H

𝑝

𝑣
𝑖𝑦 = 0

1

⋯

V

H

𝑝
𝑣

V

H

𝑝
𝑣

V

H

𝑝
𝑣

2



Toric presentation #1: Indices Revisited
• Lattice (G = (V,E))

• Coordinates 𝑖𝑥, 𝑗𝑦 ∈ (ℤ𝐿𝑥
, ℤ𝐿𝑦

)

• Periodic boundaries 𝐿𝑥, 𝑗 ≡ 0, 𝑗 , 𝑖, 𝐿𝑦 ≡ 𝑖, 0

• Stabilizers/Interactions/Symmetries coordinate:
• X-type interaction centered on vertices 𝑣 ∈ 𝑉  

• indexed by coordinates 𝑖𝑥, 𝑗𝑦 → 𝑘𝑥𝑦 = 𝑖𝑥 + 𝐿𝑥𝑖𝑦

• Z-type interaction centered on plaquettes p are centered 
on the dual lattice 

• Qubits therefore live on the edges E
• Vertical edges EV ∈ { 𝑖, 𝑗 , 𝑖, 𝑗 ± 1 }

• Horizontal edges EH ∈ { 𝑖, 𝑗 , 𝑖 ± 1, 𝑗 }
• V , H considered a unit cell (sublattice) degree of freedom

𝐴𝑣′=𝑘=6 =  𝑋𝑁V
⊗  𝑋𝐸H

⊗  𝑋𝑆V
⊗  𝑋𝑊H

            =  𝑋(𝑘,1) ⊗ 𝑋(𝑘,7) ⊗ 𝑋(𝑘,11) ⊗ 𝑋(𝑘,5)

𝐵𝑝  = 𝑍𝑁H
⊗ 𝑍𝐸V

⊗ 𝑍𝑆H
⊗ 𝑍𝑊V

𝐵7 = 𝑍(7,8) ⊗ 𝑍(8,13) ⊗ 𝑍(12,13) ⊗ 𝑍(7,12)

Dual 

Lattice

V

H

𝑝

𝑣

Unit cell

𝑣′ XX

X
X

1 2 3 4

121110 14

5

1 2 3 4

121110 14

5

0

𝑝Z Z

Z

Z

𝑝′Z Z

Z

Z

7 8 9

13

𝐿𝑥 = 5, 𝐿𝑦 = 3
(last identified row not illustrated)

1 2 34 = 0

5 6 8 9

10 11 13 1412

1014

6



X

Z

X

X

X

Z Z Z ZZZZZ

X

X

X

X

X

X

Z ZZZ Z Z Z ZZ

X

X

X

X

X

Z

X X X Z
Z

Z
Z

Z
Z

Z
Z

X X X X X X X X

Z
ZZ

Z
Z

Z

X X X X X
ത𝜓

𝐻𝐻
                    ⊗ ത𝜓

𝑉𝑉

ҧ𝑍𝐻

ҧ𝑍𝑉

ത𝑋𝐻

ത𝑋𝑉

XX

X
X

Z ZZ

Z

XX

X
X

Z ZZ

Z

XX

X
X

†
†

†
†

ത𝟙 ∈ 𝐿(𝐶)

v
v

v
v

v
v

Logical Algebra L 𝒞  consists of:
• 𝑆𝑈(2) with vertical X and Z
• 𝑆𝑈(2) with horizontal Z and X

• i.e., the qubit sublattice 
supporting a logical operator

• 𝑆𝑈 2 s mutually commute



V

H

𝑝
𝑣

𝑖𝑥 = 0, … … , 𝐿𝑥 − 1

𝐿𝑦 − 1

Unpacking code representations: X-Z and the unit cell(s) 
• Boundaries:

• Rough (x-type)
• 𝑒 → 1, 𝑚 → 𝑚

• Smooth (z-type)
• 𝑒 → 𝑒, 𝑚 → 1

• Lattice surgeries 
• (Dis)connect rough and 

smooth to (un-)fold toric 
code

• Reorient rough and smooth 
for surfaces codes

• Bravyi, Kitaev 1998

• Multi-genus objects
• Y-handled torus
• X punctured surface 

code
• Twistors

• Physical (Dehn) twist
• Algebraic (later) twist

𝐴𝑣  =  𝑋𝑁𝐻
⊗ 𝑋𝐸𝑉

⊗  𝑋𝑆𝐻
⊗  𝑋𝑊𝑉

𝐵𝑝  = 𝑍𝑁𝐻
⊗ 𝑍𝐸𝑉

⊗ 𝑍𝑆𝐻
⊗ 𝑍𝑊𝑉

𝑣 XX

X
X

𝑝

Z ZZ

Z

𝑒

𝑚

1

1[[2𝑁2, 2,
𝑁

2
− 1]][[2𝑁2, 1,

𝑁

2
− 1]]



ZXXZ Presentation: A symmetrized Toric Code 
1. Rotate lattice by ±

𝜋

4

2. Apply 𝐻⊗
𝑁

2

Where are the Qubits?
• Previously on edges of dashed lines
• Now on vertices of chessboard 

lattice

What are the Excitations?
• Charges e

• Previously on lattice vertices 
(dashed lines) 

• Now Black Bishops

• Fluxes m
• Previously on inscribed white 

plaquettes 
• White Bishops

A la Google paper
𝐵𝑟

𝑤, 𝐵𝑟+ Ƹ𝑖 
𝐵 = 𝜖

𝑒 × 𝑚 = 𝜖



Algebraic Twist
=

(i) (ii)

(iv)

(iii)

(vi)

=

(i) (ii)

(iv)

(iii)

(vi)

~

=

(i) (ii)

(iv)

(iii)

(vi)

𝜓 = 𝑒𝑚

=

(i) (ii)

(iv)

(iii)

(vi)

=

(i) (ii)

(iv)

(iii)

(vi)

Condensed fermion!
Chiral logical operators!

The Twist 
~ 

Gauging a D=1 defect into D=2 Toric code
Barkeshli et al 22 arxiv.:2208.07367



Toric code with a twist(ed qubit)

v
v

v
v

v
v

Deconfined quasiparticles
o Charges hop between vertices  via  principal lattice
❖ Fluxes hop between plaquettes via dual (---)lattice 

v
v

v
v

v
v

𝟙 ∈ 𝐿(𝐶)



𝑆′ = { , − , − }XZ

𝑆 = 𝐴𝑣, 𝐵𝑝, 𝐴𝑣𝐵𝑝

code deformation via measurement

𝑆′ = {𝑍𝑋, 𝐴𝑣𝐵𝑝, 𝑍𝑋𝐴𝑣𝐵𝑝}

𝑆 = { , , − }XX

X
X Z ZZ

Z

Z

Z

YX

X
Y

Z

Z

YX

X
Y Z

Z

ZX

X
X

Z

X
=

𝑋1𝑍2 = +1
HH

→

𝜌1

𝜌2



=
+1 −1

𝑀 𝑍𝑣𝑋ℎ
 

Z
Z

Z
Z

Z

X

X

X

X

X

X

Z
Z

Z
Z

X

X

X
𝑚 e

Zig-zag measurement ∼ a rough-rough 
boundary functor, condensing 𝑒𝑚 = 𝕀 
That is, 𝑒 and 𝑚 annihilate at this internal 
topological deformation 

Anirudh Krishna and David Poulin. Topological wormholes: Nonlocal 
defects on the toric code. Physical Review Research, 2(2), 2020.



=

+1 −1

𝑀 𝑍𝑣𝑋ℎ
 

Z
Z

Z
Z

Z

X

X

X

X

X

X

(𝑏)

(𝑐) (𝑑)

(𝑎)
(𝑒)

(𝑓)

(ℎ) (𝑖)

(𝑔)

Z
Z

Z
Z

X

X

X

A twisted topological qubit
ത0 𝑡 ≡ ത0 𝑉 ഥ+ 𝐻
ത1 𝑡 ≡ ത1 𝑉 ഥ− 𝐻

[[2𝑁2, 𝟏,
𝑁

2
− 1]] 

Distance 
𝑁

2
− 1 for Z errors  (b)

𝑁 − 1 for Y errors                 (d)
3𝑁

2
− 1 for X errors                (c)

XX

X
X

Z ZZ

Z

𝑆 = {𝐴𝑣, 𝐵𝑝, 𝐴𝑣𝐵𝑝}

𝑆 = {𝑍𝑋, 𝐴𝑣𝐵𝑝, 𝑍𝑋𝐴𝑣𝐵𝑝}



Toric code with a twist(ed qubit)

v
v

v
v

v
v

Deconfined quasiparticles include: 

o Charges hop between vertices  via lattice “streets”
o Loop action of Z-type

❖ Fluxes hop between plaquettes via dual lattice 
❖ Action of X-type

𝟙 ∈ 𝐿(𝐶)

ത𝑋∥
𝑡

= ҧ𝑍∥
𝑡

= ത𝑋∥
𝑡 ഥ𝑍∥

𝑡
∈ 𝟙 

_________________
Logical Operators
• Logical Z ∥ to twist
• Logical Y ⊥ to twist

12

34

ҧ𝑍⊥
𝑡 ത𝑋⊥

𝑡 = +𝑖 ത𝑌⊥
𝑡

= =



Majorana End Twists

2210.10255 Google Q.AI.



2210.10255

Bonderson, K, Shtengel  PRL 2006



2210.10255

𝑆 =
1

2

1 2 1

2 0 2

1 2 −1

  



2210.10255



Topology of dynamics: (complex) time-evolution

• State’s rate of change defines field lines in Hilbert space. 
• |Ψ⟩ was a vector, so is ሶΨ = 𝜕𝑡 Ψ =

𝜕

𝜕𝑡
Ψ =

−𝑖

ℏ
𝐻(𝑡) Ψ

• For (real-time evolution) Unitary operator (in spectral basis):
• Field lines orbit the eigenstates (which are fixed points)

• For Imaginary-Time evolution operators or Measurement gates
• Field lines flow towards measurement basis (which are fixed points)

• Dynamical Quantum Phase Transition  
• Brief technical encoding of problem
• Fermionic topological invariants encoded in topology of dynamical manifold 

• momentum-frequency 𝑘, 𝜔  space
• Topological invariant is the number of poles in the manifold defined by the dynamical quantum Green’s (a.k.a. propagation or 

correlation) function 
• Diagonalization of free-theory and experiment 

• Calculation of topo invariant
• Take home assignment, do this for 2, 4 lattice sites (4, 8 qubits)



Unitary vs Non-Unitary Time Evolution
-- example with one-qubit SU(2, ℂ) “gates” 
• SU(2) basis: 𝑋, 𝑌, 𝑍, 𝐼

• Generators: 𝐺 = 𝑣0𝐼 + 𝑣1𝑋 +
𝑣2𝑌 + 𝑣3𝑍, Ԧ𝑣 ∈ ℂ4

• Time (𝑡) evolution operator 
generated by 𝐺: 𝑒−𝑖𝑡𝐺

• Unitary:  Ԧ𝑣 ∈ ℝ4

• Non-unitary: Ԧ𝑣 ∈ ℂ4\ℝ4

• Non-unitary → unitary 
(measurement postulate):

Valid Quantum Map on ρ = 𝜓 𝜓

𝑒−𝑖𝑡𝐺𝜌𝑒𝑖𝑡𝐺†

Tr 𝑒−𝑖𝑡 𝐺−𝐺†
𝜌

Ԧ𝑣 = 0,1,0,0 → 𝑋, 𝑋 Ԧ𝑣 = (0.375,0,0,0.625)

Ԧ𝑣 = 0,0,1,0 → 𝑌, 𝑌 Ԧ𝑣 = (1,0, 𝑖, 1)

Orbits of unitary gates vs non-unitary gates 
(see also: A. Galda and V.M. Vinokur, “Linear dynamics of classical 
spin as Möbius transformation,” Sci. Rep. 7, 1168 (2017).

gates

gates

Unitary Gates Non-Unitary Gates



The Only Quantum Circuit You’ll Ever Need
X ⋅ 𝕀 ∓ 𝑍 = X ± iY = 𝕀 ± 𝑍 ⋅ X

𝕀 Z

𝕀 ± 𝑍

2

X

=

𝑈+            𝑈−

=
𝐻 𝐻0 0  |1⟩⟨1|

time

𝑖
𝑖

ҧ𝑖

=
Π±

|𝑖⟩

|𝑖⟩ | ҧ𝑖⟩ |𝑖⟩ | ҧ𝑖⟩
+ −

Note the state-dependent 
weighting factors

‖Ui|Ψ⟩‖



Mike & Ike, Chapter pp362                                                                                   LCU of    
𝕀

2
±

𝑍

2

H H

𝜌

0 𝐸

0

0 1

1

𝕀

1 + 𝑍

2
= |0⟩⟨0|

1 − 𝑍

2
= |1⟩⟨1|

https://pennylane.ai/qml/demos/tutorial_lcu_blockencoding
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Quantum Computation of Topological 
Invariant
• Computing a topological invariant, but now, in the language of a 

quantum computer.
• Topological Dynamical Quantum Phase Transition (TDQPD)

• In a field theory (https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.250401)

• Minimal Experimental Data (PRXQuantum.4.030323)

Dynamical Quantum Phase Transition  
Skip technical encoding of problem
Fermionic topological invariants in (k,w) space

Poles in dynamical manifold of the quantum (Green’s) 
correlation function  
Diagonalization of free-theory — experiment 
Take home assignment, do this for 2, 4 lattice sites (4, 
8 qubits)

Calculation of topo invariant

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.250401




Topological Dynamics

At t = 0 𝑚 → −𝑚 temporal band 
inversion. Winds the quantum 
state space. Band inversion is a 
typical ingredient in the generation 
of topological phases in condensed 
matter physics.

Mapped onto a long-rage interacting 
fermionic model. (1D Model)



PhysRevLett.122.050403





Experimental Data



More Data



Summary

• Examined topological features of topological quantum error 
correcting code families:
• A topological field theory underpinning discrete-logic
• Emergent quasiparticles in the laboratory

• Topologies of logical computations
• Unitary maps (real time evolution)

• Eigenstates are fixed points and sources of curl for differential flow field

• Measurement and imaginary time evolution
• Measurement settings are 

• Algorithms to compute dynamical & topological phase transition in a 
quantum field theory.
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