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Topological Quantum Computation Algorithms
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* The underlying topology of quantum computing algorithms?

Q: What does this mean? P

* Algorithms to topologically error-corrected quantum computers?
* Quantum algorithms for computing topological quantities?

* Classical algorithms to compute the topology of hardware taking part in
guantum computations?

* Develop a topological qubit? Create analog/synthetic topological matter? Program in a
topologically error corrected code-space?

A: All are valid interpretations.

* Our goal is to differentiate the facets of topological quantum computing
algorithms (TQCA) so that you can go beyond this and say what you mean.

* To do so, we must first define guantum topology.



Day I:(Classical and
Quantum Topology

The Nobel Prize in Physics 2016
David J. Thouless, F. Duncan M. Haldane and J. Michael Kosterlitz
“for theoretical discoveries of topological phase transitions and topological phases of matter”

The Nobel Prize in Physics 1998
Robert B. Laughlin, Horst L. Stérmer and Daniel C. Tsui
“for their discovery of a new form of quantum fluid with fractionally charged excitations”

The Nobel Prize in Physics 1985
Klaus von Klitzing
“for the discovery of the quantized Hall effect”

Definitions
Examples
Mathematical Applications

REVIEWS OF MODERN PHYSICS

ecent Accepted Authors Referees Search Press About Editorial Team N

Access by Oak

Berry phase effects on electronic properties

Di Xiao, Ming-Che Chang, and Qian Niu
Rev. Mod. Phys. 82, 1959 — Published 6 July 2010

Article References Citing Articles (3,233) m Export Citation

ABSTRACT -

Ever since its discovery the naotion of Berry phase has permeated through all branches of physics. Over
the past three decades it was gradually realized that the Berry phase of the electronic wave function
can have a profound effect on material properties and is responsible for a spectrum of phenomena,
such as polarization, orbital magnetism, various (quantum, anomalous, or spin) Hall effects, and
quantum charge pumping. This progress is summarized in a pedagogical manner in this review. A brief
summary of necessary background is given and a detailed discussion of the Berry phase effect in a
variety of solid-state applications. A common thread of the review is the semiclassical formulation of
electron dynamics, which is a versatile tool in the study of electron dynamics in the presence of
electromagnetic fields and more general perturbations. Finally, a requantization method is
demonstrated that converts a semiclassical theory to an effective quantum theory. It is clear that the
Berry phase should be added as an essential ingredient to our understanding of basic material
properties.

9 More

DOIl: https://doi.org/10.1103/RevModPhys.82.1959

©2010 American Physical Society
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Day 1 — Quantum Topology — Outline

def quantum_topology(): 333

* Classical Topology: ) =
* Manifolds
* Curvature
* |nvariants
* Hands on Examples (hopefully)

* Classical-quantum Topology
* Topological defects and excitations in
(topologically trivial) qguantum systems B I s e

* Topologically non-Trivial Quantum
Matter

* Topological Phases, Protected Edge-
modes, and the Holographic Duality

* Examples, Tools & Invariants
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Figure 1. To a topologist, a
donut and a coffee cup are the
same because they can be con-
finuously deformed into each
other without tearing or rejoining
the surface.

Genus is a global property




What is Topology?

Topology studies properties of spaces that are invariant under any continuous deformation. It is sometimes called "rubber-sheet geomstry” becanse the objects can be
stretched and contracted like rubber, but cannot be broken. For example, a square can be deformed into a circle without breaking it, but a figure 8 cannot. Hence a square

is topologically equivalent to a circle, but different from a figure 8.

Here are some examples of typical questions in topelogy: How many holes are there in an object? How can vou define the holes in a torus or sphere? What is the boundary
of an object? Is a space connected? Does everv continuous function from the space to itself have a fixed point?

Topology is a relatively new branch of mathematies; most of the research in topology has been done since 1900, The following are some of the subfields of topology.

1. General Topology or Point Set Topology. General topology normally considers local properties of spaces, and is closely related to analysis. It generalizes the
concept of continuity to define topological spaces, in which limits of sequences can be considered. Sometimes distances can be defined in these spaces, in which
case they are called metric spaces; sometimes no concept of distance makes sense.

2. Combinatorial Topology. Combinatorial topology considers the global properties of spaces, built up from a network of vertices, edges, and faces. This is the
oldest branch of topology, and dates back to Euler. It has been shown that topologically equivalent spaces have the same numerical invariant, which we now call —— Birth of the topology:
the Euler characteristic. This is the number (V - E + F), where V, E, and F are the number of vertices, edges, and faces of an object. For example, a tetrahedron and Seven Bridges of Konigsberg solution by Euler
a cube are topologically equivalent to a sphere, and any “triangulation” of a sphere will have an Euler characteristic of 2.

3. Algebraic Topology. Algebraic topology also considers the global properties of spaces, and uses algebraic objects such as groups and rings to answer topological
questions. Algebraic topology converts a topological problem into an algebraie problem that is hopefully easier to solve. For example, a group ealled a homologyv
group can be associated to each space, and the torus and the Klein bottle can be distinguished from each other because thev have different homology groups.

Wednesday July 17

Error correction Eddie Schoute (LANL)

Topological quantum computing from theory/algerithms perspective Eugene Dumitrescu
Thursday July 18

Introduction to QSC landscape Vivien Zapf (LANL] 45 min

Topological spin liquids | Gabor Halasz (ORNL) 45 min

Topological spin liquids Il Alan Tennant (ORNL) 45 min

Topological superconductors Il Rob Moore (ORNL) 45 min

Torus Klein Bottle

Algebraic topology sometimes uses the combinatorial structure of a space to caleulate the various groups associated to that space. . L .
————— Object studied in physics

4. Differential Topology. Differential topology considers spaces with some kind of smoothness associated to each point. In this case, the square and the circle
would not be smoothly (or differentiably) equivalent to each other. Differential topology is useful for studying properties of vector fields, such as a magnetic or
electric fields.

Topology is used in many branches of mathematies, such as differentiable equations, dynamical systems, knot theory, and Riemann surfaces in complex analysis. It is also
used in string theorv in physics, and for describing the space-time structure of universe.
https://uwaterloo.ca/pure-mathematics/about-pure-math/what-is-pure-math/what-is-topology



“Topology (from the Greek words tonog, 'place, location', and Adyog, 'study') is the part of mathematics concerned with the
properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling,
and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself.” -Dr. Wikipedia

M. Vonk (2005) arXiv:hep-th/0504147

(a)

Figure 3: (a) The sphere is an orientable without handles or boundaries. (b)
An orientable manifold with one boundary and one handle. (c) The Mdbius strip: an
unorientable manifold with one boundary and no handles.


https://arxiv.org/pdf/hep-th/0504147

Hil T am a 20
person, who lives in a
20 world...

Because of this
my mouth and anus
form a path that
splits me right
down the middle.

( sweet Jesusi! '




Braid Group: a topological group
—

is different from

I

On the other hand, two such connections which can be made to look the same by "pulling the strands" are considered the same braid:
smooth
deformations

Y
N

is the same as

!

i

All strands are required to move from left to right; knots like the following are not considered braids:

D e is not a braid

*—

I

Any two braids can be composed by drawing the first next to the second, identifying the four items in the middle, and connecting

corresponding strands:

composed with yields

il

A L
|

Another example: Particle encircling another is a double braid. Particles

at original positions, but worldlines remain linked.

yields ﬁ _ o _ : \\/{ :

composed with

A

The composition of the braids ¢ and T is written as GOT.



Aside While We’re on Loops:
Braiding, Exchange-Statistics, Dimensionality

* Imagine a wavefunction of many identical particles of type a, b, c.

¢ ‘P(al, ey aN, bl' Yy bM’ Cll “cy CO) — LI”(C_i, b, E)
* u; = (U, x;,y;,z;) means a particle of type u at coordinates (x;, y;, Z;)

* Since these are identical particles no observable, or measurable quantity, can
differ if we exchange two particles of the same type

* Under exchange of identical particles

o |®) = |¥(az ay,+,b,¢)) = 04, 4,1¥(d, b, ¢)) — —
* Equivalence under exchange implies: ’ ’

+ (¥(d,b,0)|0]¥(a,b,0)) = (0),, = (0),

e (+1)? = (—1)? = 1 correspond to bosons and fermions



Homotopy and The Fundamental Group

e Basic idea is that topological spaces cover each other, and we can use the way they cover one another to
differentiate between them.

* In the mathematical field of algebraic topology, the fundamental group of a topological space is
the group of the equivalence classes under homotopy of the loops contained in the space (M)

[\Kﬁ-\lﬁ
”‘ |
N z7
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All loops on surface of sphere are contractible!

All double braids can be un-done with a third dimension. Only fermion
and boson 0D, point particles, in 3+1D world. Higher dimensional (1D,
2D) particles exhibit topological features in 3+1D.

T\

T(1):Z

Two classes of non-contractible, topologically non-trivial, loops!
*  One for each handle of the Torus

Loops are trivial if not encircling either handle of the torus




Classical Lattice Surgery: A Primer

Assignments:

1. Cut, twist, and glue/tape a sheet of paper to form a Mobius strip.
1. Congrats on your first successful classical lattice surgery.
2. Describe the topology

2. Cut the Mobius strip in half along the long, twisted handle.
1. Describe the resulting topology.

Homework:

3. Cut the Mobius strip, like in 2, but at the % mark.

Describe the resulting topology.



Topological Invariant

1: Euler Characteristic

and the Gauss-Bonnet Theorem

kgds +

oM

Geodesic curvature Kk, integrated
over (little bits ds) of manifold M’s
boundary oM

Negaﬁvgfm Vatlirg

Postive Gypvature

M

oM

KdA =2ny(M)

Gaussian curvature K = k1K,
integrated over of surface of
manifold M

B principal

principal
direction v,

\ curvature K,

principal
curvature K,

A

Euler characteristic y(M) is a topological
invariant which is invariant to bending and
stretching of the manifold.

Any extra positive curvature somewhere is
negated by negative curvature elsewhere.

x(M) is a global property

y¥(M) — 1is the genus. |.e. the number of
holes in a 2D surface embedded in 3D



Analytic Exercise # 1

111

Using K(R, 0,4) = %% = 75
for a sphere of radius R, compute:

2TT T
f Rd@f Rsingdp K = 2y (M)
0 0

HW/test question(s):
What is the Euler characteristic of a sphere? What is its genus?




The topological theory of defects in ordered media**

N. D. Mermin
Laboratory of Atomic and Solid State Physics Cornell University, Ithaca, New York 14853

*Topologically trivial

Aspects of the theory of homotopy groups are described in a mathematical style closer to that of
condensed matter physics than that of topology. The aim is to make more readily accessible to physicists
the recent applications of homotopy theory to the study of defects in ordered media. Although many
physical examples are woven into the development of the subject, the focus is on mathematical pedagogy
rather than on a systematic review of applications.

CONTENTS B. Group-theoretic description of the order- | 609
parameter space
1. Introduction 592 C. Examples of order-parameter spaces as 611
Il. Ordered Media and Defects 594 coset spaces 611
A. Examples of ordered media 594 1. Planar spins 612
1. Planar spins 594 2. Ordinary spins 612
2. Ordinary spins 594 3. Nematics 612
3. Nematic liguid crystals 594 4, Biaxial nematics 612
4. Biaxial nematics 595 5. Superfluid helium-3
5. Superfluid helium-3 595 D. Properties of the fundamental group of 613
B. A simple example of the topology of a topological group
defects: planar spins in two dimensions 596 V. The Fundamental Group of the Order- 614
C. An even simpler illustration: ordinary parameter Space
spins in the plane 600 A. The fundamental theorem on the [ E}
II. The Fundamental Group GO0 fundamental group
A. The fundamental group at a point 601 1. The correspondence between loops in
1. Loops at x 601 coset space and the connected 615
2. Homotoples at x 601 components of the isotropy subgroup
3. The product of two loops 602 2. Proof of the isomorphism between 616
4. The product of homotopy classes m (G/H) and H/H,
of loops 602 B. Computing the fundamental group of the 617
5. The fundamental group at x, m{R,x) 602 order-parameter space 617
6. A few simple examples 603 1. Planar spins 617
a. The eircle 603 2. Ordinary spins 617
b. The surface of a sphere 603 3. Nematics 618
¢. The figure-eight space 604 4. Biaxial nematics 619
B. The fundamental group of a connected space 604 5. Superfluid helium-3 619
1. The isomorphism between fundamental VI. Media with Non-Abelian Fundamental Groups
groups based at different points 604 A. More on the nature of line defects in 620
2, Uniqueness (or lack of uniqueness) of biaxial nematics
the path isomorphisms between based B. The combination of defects in the non- 621
fundamental groups 605 Abelian case 623
C. The fundamental group and the classes of C. The entanglement of line defects
freely homotopic loops 606 VII. The Second Homotopy Group and the
D. The fundamental group and the Classification of Point Defects in Three 625
combination of line defects 607 Dimensions 625
IV. Group-theoretic Structure of the Order- A. The second homotopy group at x, m3(R,x) 626
parameter Space 608 B. The second homotopy group, wa(R)
A. Continuous groups 608 C. The fundamental theorem on the second 628
homotopy group of coset spaces
T D. The action of 7y on wy: classes of 630,
freely homotopic spheres in G/H
*A preliminary version of this paper appeared as Technical E. Examples of point defects 631
Report No, 2045 of the Materials Science Center of Cornell 1. Planar spins 631
University. It has been substantially revised at the University 2. Ordinary spins 631
of Sussex, with the partial financial support of the Science Re- 3. Nematics 631
search Council of Great Britain and with the generous help and 4. Biaxial nematics 632
hospitality of A. J. Leggett and D. F. Brewer. The revision 5. Superfluid helium-3 632
has also been supported in part by the National Science Founda- VIiII., Ordered Media with Broken Translational 632
tion under Grant No. DMTR 77-18329 and through the Materials Symmetry in the Uniform State
Science Center of Cornell University, Technical Report No. A, The naive generalization 633
4021, 1. Order-parameter space 633
A complementary review of homotopy, from the point of view 2, Defects and homotopy groups 633
of a mathematician and field theorist, by Louis Michel is sched- 3. Computing the homotopy groups 633

uled to appear in a future issue of Reviews of Modern Physics. B. Critigue of the naive generalization 633

Reviews of Modern Physics, Vol. 51, No. 3, July 1979 Copyright © 1978 American Physical Society 591



Topological Defects

Topological Defects

Defects which are stable and cannot destroyed purely local actions.

The defect may extend of to the end of the crystal or very far away.

e.g. Crystalline Defects
* Lateral dislocation

* Rotational disclination
* In 2D defect lines become points

And for, e.g. magnetic, vector fields

BKT Transition: vortex - anti-vortex =0

We will find computational/information-theoretic analogies

of this phenomenon tomorrow!

Disclinations, William F. Harris: Scientific American 1977

SCREW DISLOCATION

Anti-aligned defect

Twisted defect

The hairy ball theorem

« "you can't comb a hairy ball flat
without creating a cowlick®
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Topological Defects

* https://www.epj-conferences.org/articles/epjconf/pdf/2018/10/epjconf lattice2018 14003.pdf

* https://phas.ubc.ca/~berciu/TEACHING/PHYS502/PROJECTS/18BKT.pdf
e https://www.ribbonfarm.com/2015/09/24/samuel-becketts-quide-to-particles-and-antiparticles/

e https://johncarlosbaez.wordpress.com/2016/10/07/kosterlitz-thouless-transition/


https://www.epj-conferences.org/articles/epjconf/pdf/2018/10/epjconf_lattice2018_14003.pdf
https://phas.ubc.ca/~berciu/TEACHING/PHYS502/PROJECTS/18BKT.pdf
https://www.ribbonfarm.com/2015/09/24/samuel-becketts-guide-to-particles-and-antiparticles/
https://johncarlosbaez.wordpress.com/2016/10/07/kosterlitz-thouless-transition/

..'\L__ - - /
Not to scale ‘
* Instantaneously acquiring a Iocaléohase from the rotation ==——
of the Earth’s curvature (S? € R?) and rotation.

» Parallel transport is felt as a Coriolis force in our intertial co-
rotating frame.

* Angular speed due to rotation: w = ;T’fysinqb

» After each cycle the system returns to its original position
with a velocity modified by the angular phase it acquired
along the cycle’s closed path.

» Skipping over many examples of topological
waves/excitations/phenomena due to parallel transport.

* The unifying role of topology, Mark Buchanan,
https://www.nature.com/articles/s41567-020-1001-y




Topological Quantum Matter

 What is the phase acquired by a quantum state as it evolves (precesses) along
some curve (energy potential)? Analogous expression for parallel transport is:

* Ay = 1YlouY) = i{blo.Y)

* This is the Berry Connection. It’s a complex number (amplitude) that tells us how the

state (a vector) connects with its tangent vector. It’s a rate of change of the curve with
respect to u

. The velocity operator in the g representation has the
+ y = [ dl -4, is the Pancharantnam-Berry Phase form v(g.1)=3H(q.0) /dthq).* Hence, the average veloc-
C ity in a state of given ¢q is found to first order as

e, =V, XA .

v = Vv = Ly o 2242

.. . . . q
* Additional contribution to electron velocity!
S {(un&H/ﬁq|unr)(unf|r?un/ﬁt) e }
e Given by the curvature of the quantum bands "o &0 = )

(2.3)

where c.c. denotes the complex conjugate. Using the fact
that (u,|dH/dq|u, )= (e,—&,){du,/ dq|u, ) and the iden-

tity 2,/|u, Yu, | =1, we find
de,(q) | [ du, | du, au,, | du,
e P e | G L B U R
at a | ag
(2.4)

hog aq



ﬁ/ﬁ Quantum Band Topology & the 0/
Holographic Bulk-Boundary Correspondence

Boundary & Bulk

Two energy bands are topologically equivalent oM
if they can be deformed into one another
without closing the (or opening a new) gap.

The topological bulk information is also encoded on the surface
Altland & Zirnbauer, “Novel Symmetry Classes in Mesoscopic Normal-Superconducting Hybrid Structures” PhysRevB.55.1142



https://doi.org/10.1103/PhysRevB.55.1142

Information in the bulk is encoded on the boundary surface. A manifestation of Stokes theorem.
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Bulk orbitals: localized! Electrons are confined, by the large magnetic field, to harmonically oscillate within a small region.
No particles collisions, but they would feel Coulomb repulsion (if we considered it)

Edge orbitals: cut-off by boundary. Forced to “skip” along edge. Whatever the edge may be!



Topological Quantum Edge States

* Bulk-boundary correspondence and edge states. ol — e M__
* Observe the following facts: ol
* The number of quantized edge states is an integer
 The number of edge states changes upon a topological phase transition ; 06
* The same number (of edge states) can be found by integrating the Berry :
curvature over all occupied quantum states A
02}
The quantization of the Hall conductance (ny = 1/Rmy) has the important property of being e2><ceedingly precise.l®! Actual = ool L. S
measurements of the Hall conductance have been found to be integer or fractional multiples of % to nearly one part in a billion. It Magnetic Field (T)

has allowed for the definition of a new practical standard for electrical resistance, based on the resistance quantum given by the
von Klitzing constant Ry. This is named after Klaus von Klitzing, the discoverer of exact quantization. The quantum Hall effect
also provides an extremely precise independent determination of the fine-structure constant, a quantity of fundamental

importance in quantum electrodynamics.

In 1990, a fixed conventional value Ry ¢ = 25 812.807 Q was defined for use in resistance calibrations worldwide. [° On 16
November 2018, the 26th meeting of the General Conference on Weights and Measures decided to fix exact values of 4 (the

Planck constant) and e (the elementary charge),!”! superseding the 1990 value with an exact permanent value

Re = & = 25812.807 45... 0. 8]
K~ o2 . e B



Examples and In Class Exercises

* Python exercise: Edge Mode Exploration

 See attached python notebooks to compute:

« Unpaired Majorana fermions in quantum wires
 https://arxiv.org/abs/cond-mat/0010440
* https://iopscience.iop.org/article/10.1070/1063-7869/44/10S/S29

e SSH model edge modes

e Zoo of Topological Invariants

e (O-dimensional) Qubit Exercise
e Compute the SU(2) invariant as per Niu/Bernevig and earlier.


https://iopscience.iop.org/article/10.1070/1063-7869/44/10S/S29

Conclusion

* Topology is ubiquitous
* Also smooth, except when there are boundaries
* Rich mathematical subject
* Physically ubiquitous in classical phenomena
* Also appear in topologically trivial guantum matter

* Quantum Topology is also ubiquitous
e Curvature, winding, and covering invariants
* Physical realizations
* Bulk-boundary holographic duality
* Robustness of excitations

 This is a foundation for what we will see tomorrow
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