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Topological Quantum Computation Algorithms

Q: What does this mean?
• The underlying topology of quantum computing algorithms?
• Algorithms to topologically error-corrected quantum computers?
• Quantum algorithms for computing topological quantities?
• Classical algorithms to compute the topology of hardware taking part in 

quantum computations? 
• Develop a topological qubit? Create analog/synthetic topological matter? Program in a 

topologically error corrected code-space?

A: All are valid interpretations.
• Our goal is to differentiate the facets of topological quantum computing 

algorithms (TQCA) so that you can go beyond this and say what you mean.
• To do so, we must first define quantum topology.



Day I:(Classical and) 
Quantum Topology

Definitions
Examples
Mathematical Applications

The Nobel Prize in Physics 2016
David J. Thouless, F. Duncan M. Haldane and J. Michael Kosterlitz
“for theoretical discoveries of topological phase transitions and topological phases of matter”

The Nobel Prize in Physics 1998
Robert B. Laughlin, Horst L. Störmer and Daniel C. Tsui
“for their discovery of a new form of quantum fluid with fractionally charged excitations”

The Nobel Prize in Physics 1985
Klaus von Klitzing
“for the discovery of the quantized Hall effect”

https://www.nobelprize.org/prizes/physics/2016/summary/
https://www.nobelprize.org/prizes/physics/2016/thouless/facts/
https://www.nobelprize.org/prizes/physics/2016/haldane/facts/
https://www.nobelprize.org/prizes/physics/2016/kosterlitz/facts/
https://www.nobelprize.org/prizes/physics/1998/summary/
https://www.nobelprize.org/prizes/physics/1998/laughlin/facts/
https://www.nobelprize.org/prizes/physics/1998/stormer/facts/
https://www.nobelprize.org/prizes/physics/1998/tsui/facts/
https://www.nobelprize.org/prizes/physics/1985/summary/
https://www.nobelprize.org/prizes/physics/1985/klitzing/facts/


Day 1 – Quantum Topology – Outline

• Classical Topology: 
• Manifolds
• Curvature
• Invariants
• Hands on Examples (hopefully)

• Classical-quantum Topology
• Topological defects and excitations in 

(topologically trivial) quantum systems

• Topologically non-Trivial Quantum 
Matter
• Topological Phases, Protected Edge-

modes, and the Holographic Duality
• Examples, Tools & Invariants

=

def quantum_topology():



Topology

=

= = =

=

+ all smooth deformations, which preserve topology

=



https://uwaterloo.ca/pure-mathematics/about-pure-math/what-is-pure-math/what-is-topology

Birth of the topology:
Seven Bridges of Königsberg solution by Euler

Object studied in physics



“Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the part of mathematics concerned with the 
properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, 
and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself.” -Dr. Wikipedia

M. Vonk (2005) arXiv:hep-th/0504147 

https://arxiv.org/pdf/hep-th/0504147




Braid Group: a topological group

smooth 
deformations          

𝜎1 𝜎1
−1

Particle encircling another is a double braid. Particles 
at original positions, but worldlines remain linked. 

= =∘



Aside While We’re on Loops:
Braiding, Exchange-Statistics, Dimensionality 
• Imagine a wavefunction of many identical particles of type a, b, c. 

• Ψ(𝑎1, ⋯ , 𝑎𝑁 , 𝑏1, ⋯ , 𝑏𝑀 , 𝑐1, ⋯ , 𝑐𝑂) = Ψ Ԧ𝑎, 𝑏, Ԧ𝑐
• 𝜇𝑖 = (𝜇, 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) means a particle of type 𝜇 at coordinates (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)

• Since these are identical particles no observable, or measurable quantity, can 
differ if we exchange two particles of the same type 

• Under exchange of identical particles

• Φ = Ψ 𝑎2, 𝑎1, ⋯ , 𝑏, Ԧ𝑐 = 𝜎𝑎2,𝑎1
|Ψ Ԧ𝑎, 𝑏, Ԧ𝑐 ⟩

• Equivalence under exchange implies:

• Ψ Ԧ𝑎, 𝑏, Ԧ𝑐 ෠𝑂 Ψ Ԧ𝑎, 𝑏, Ԧ𝑐 = ෠𝑂
Ψ

= ෠𝑂
Φ

• (+1)2 = (−1)2 = 1 correspond to bosons and fermions



Homotopy and The Fundamental Group
• Basic idea is that topological spaces cover each other, and we can use the way they cover one another to 

differentiate between them. 

• In the mathematical field of algebraic topology, the fundamental group of a topological space is 
the group of the equivalence classes under homotopy of the loops contained in the space 𝜋1(𝑀)



All loops on surface of sphere are contractible!

Two classes of non-contractible, topologically non-trivial, loops!
• One for each handle of the Torus

Loops are trivial if not encircling either handle of the torus

All double braids can be un-done with a third dimension. Only fermion 
and boson 0D, point particles, in 3+1D world. Higher dimensional (1D, 

2D) particles exhibit topological features in 3+1D.



Classical Lattice Surgery: A Primer

Assignments:

1. Cut, twist, and glue/tape a sheet of paper to form a Möbius strip.
1. Congrats on your first successful classical lattice surgery. 

2. Describe the topology

2. Cut the Möbius strip in half along the long, twisted handle.
1. Describe the resulting topology.

Homework:

3. Cut the Möbius strip, like in 2, but at the 
1

3
 mark. 

Describe the resulting topology.  



Topological Invariant #1: Euler Characteristic 
and the Gauss-Bonnet Theorem

න
𝜕𝑀

 

𝑘𝑔𝑑𝑠 + න
𝑀

 

𝐾 𝑑𝐴 = 2𝜋𝜒(𝑀)

Gaussian curvature 𝐾 = 𝜅1𝜅2 
integrated over of surface of 
manifold M
 

Geodesic curvature kg integrated 

over (little bits 𝑑𝑠) of manifold M’s 
boundary 𝜕𝑀

𝑀

𝐾(𝐴) 𝑑𝐴

𝜕𝑀

𝑑𝑠

Euler characteristic 𝜒 𝑀  is a topological 
invariant which is invariant to bending and 
stretching of the manifold. 

Any extra positive curvature somewhere is 
negated by negative curvature elsewhere. 

𝜒 𝑀  is a global property 

𝜒 𝑀 − 1 is the genus. I.e. the number of 
holes in a 2D surface embedded in 3D

𝑑𝐴



Analytic Exercise # 1 

Using 𝐾 𝑅, 𝜃, 𝜙 =
1

𝑅
⋅

1

𝑅
=

1

𝑅2 , 

for a sphere of radius R, compute: 

HW/test question(s): 
What is the Euler characteristic of a sphere? What is its genus?

න
0

2𝜋

𝑅𝑑𝜃 න
0

𝜋

𝑅𝑠𝑖𝑛𝜙𝑑𝜙 𝐾 = 2𝜋𝜒(𝑀)

𝑅



*Topologically trivial



Disclinations, William F. Harris: Scientific American 1977

𝐶4𝐶3 ← → 𝐶5

Topological Defects

Topological Defects
 Defects which are stable and cannot destroyed purely local actions. 

 The defect may extend of to the end of the crystal or very far away. 

e.g. Crystalline Defects
• Lateral dislocation
• Rotational disclination
• In 2D defect lines become points

And for, e.g. magnetic, vector fields

BKT Transition: vortex ⋅ anti-vortex = 0 

We will find computational/information-theoretic analogies 
of this phenomenon tomorrow!

Anti-aligned defect

Twisted defect



Topological Defects
In topologically trivial systems

• https://www.epj-conferences.org/articles/epjconf/pdf/2018/10/epjconf_lattice2018_14003.pdf
• https://phas.ubc.ca/~berciu/TEACHING/PHYS502/PROJECTS/18BKT.pdf
• https://www.ribbonfarm.com/2015/09/24/samuel-becketts-guide-to-particles-and-antiparticles/

• https://johncarlosbaez.wordpress.com/2016/10/07/kosterlitz-thouless-transition/

https://www.epj-conferences.org/articles/epjconf/pdf/2018/10/epjconf_lattice2018_14003.pdf
https://phas.ubc.ca/~berciu/TEACHING/PHYS502/PROJECTS/18BKT.pdf
https://www.ribbonfarm.com/2015/09/24/samuel-becketts-guide-to-particles-and-antiparticles/
https://johncarlosbaez.wordpress.com/2016/10/07/kosterlitz-thouless-transition/


Parallel Transport and 
the Geometric Phase
 of Quantum Bands:

• Instantaneously acquiring a local phase from the rotation 
of the Earth’s curvature (𝑆2 ∈  ℝ3) and rotation. 
• Parallel transport is felt as a Coriolis force in our intertial co-

rotating frame. 
• Angular speed due to rotation: 𝜔 =

2𝜋

𝑑𝑎𝑦
𝑠𝑖𝑛𝜙 

• After each cycle the system returns to its original position 
with a velocity modified by the angular phase it acquired 
along the cycle’s closed path.

• Skipping over many examples of topological 
waves/excitations/phenomena due to parallel transport. 
• The unifying role of topology, Mark Buchanan, 

https://www.nature.com/articles/s41567-020-1001-y

Not to scale



Topological Quantum Matter
• What is the phase acquired by a quantum state as it evolves (precesses) along 

some curve (energy potential)? Analogous expression for parallel transport is: 

• 𝐴𝜇 = 𝑖 𝜓 𝜕𝜇 𝜓 = 𝑖 𝜓|𝜕𝜇𝜓  
• This is the Berry Connection. It’s a complex number (amplitude) that tells us how the 

state (a vector) connects with its tangent vector. It’s a rate of change of the curve with 
respect to 𝜇 

• 𝛾 = ׬
𝐶

𝑑𝒍 ⋅ 𝐴𝒍 is the Pancharantnam-Berry Phase 

• Ω𝜈𝜇 = ∇𝜈 × 𝐴𝜇 
• Additional contribution to electron velocity! 

• Given by the curvature of the quantum bands



Quantum Band Topology & the 
Holographic Bulk-Boundary Correspondence 

Two energy bands are topologically equivalent 
if they can be deformed into one another 
without closing the (or opening a new) gap. 

Altland & Zirnbauer, “Novel Symmetry Classes in Mesoscopic Normal-Superconducting Hybrid Structures” PhysRevB.55.1142

𝜕𝑀 

𝑀

Boundary & Bulk

The topological bulk information is also encoded on the surface

https://doi.org/10.1103/PhysRevB.55.1142


Bulk orbitals: localized! Electrons are confined, by the large magnetic field, to harmonically oscillate within a small region. 

No particles collisions, but they would feel Coulomb repulsion (if we considered it)

Edge orbitals: cut-off by boundary. Forced to “skip” along edge. Whatever the edge may be! 

𝜕𝑀

𝑀

newshub.sustech.edu.cn/en/html/201904/12775.html

Information in the bulk is encoded on the boundary surface. A manifestation of Stokes theorem. 



Topological Quantum Edge States

• Bulk-boundary correspondence and edge states. 

• Observe the following facts: 

• The number of quantized edge states is an integer

• The number of edge states changes upon a topological phase transition

• The same number (of edge states) can be found by integrating the Berry 
curvature over all occupied quantum states



Examples and In Class Exercises

• Python exercise: Edge Mode Exploration

• See attached python notebooks to compute: 
• Unpaired Majorana fermions in quantum wires

• https://arxiv.org/abs/cond-mat/0010440

• https://iopscience.iop.org/article/10.1070/1063-7869/44/10S/S29

• SSH model edge modes

• Zoo of Topological Invariants
• (0-dimensional) Qubit Exercise 

• Compute the SU(2) invariant as per Niu/Bernevig and earlier. 

https://iopscience.iop.org/article/10.1070/1063-7869/44/10S/S29


Conclusion

• Topology is ubiquitous
• Also smooth, except when there are boundaries
• Rich mathematical subject
• Physically ubiquitous in classical phenomena
• Also appear in topologically trivial quantum matter

• Quantum Topology is also ubiquitous
• Curvature, winding, and covering invariants
• Physical realizations
• Bulk-boundary holographic duality
• Robustness of excitations

• This is a foundation for what we will see tomorrow
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