
Arithmetic Quantum 
Algorithms

Eugene Dumitrescu

QIS Summer School, Wednesday July 17th 

Λεύκιππος



Outline
1. Introduction to Computation & Algorithms

1. Quantum Facts of Life 
2. Motivation
3. Ingredients of a Quantum Computation
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Paradoxical Cat States
• Quantum Computing =

• perfectly isolated from + controllable via  the outside environment

•
1

2
physics + computer science ∼

1

2
[ analog + digital ]

•
1

3
[ qubit + error correction + |algorithm⟩]

•
1

2
NISQ + BQP =

1

2
[ 𝜀𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 = 0.2 + 𝜀𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖𝑐 = 2 × 10−10 ]

•
1

2
[ physical error + |algorithmic error⟩]

•
1

2
[ uses heat producing fridges + |reversible (zero heat loss)⟩]

•
1

2
[ experimental demonstrations quantifying physical error +

|experimentally impossible today  exponentially fast matrix algorithm𝑠⟩]

• Measurement-based Zeno-Effect  Quantum Error Correction



Simulation Scenarios:

• Physical Experiment:
• Chemistry, lithography, etc. Make perfect sample. Cool to low 

T.
• Probe system from external environment. 

• e.g. electro/thermal transport, ARPES, beams of all sorts

• Classical Computation: 
• Memory management in right panel

• Quantum Computation: 
• Model target system/Explicit problem encoding 

• Discretize quantized fields on a lattice e.g. in 2nd quantization:

• Electrons  c𝑝, 𝑐𝑞
† = 𝛿𝑝𝑞  ;  𝑐𝑝

†, 𝑐𝑞
† = 𝑐𝑝, 𝑐𝑞

 = 0
• ~N qubits for N fermion modes

• Phonons, photons 𝑎𝑝, 𝑎𝑞
† = 𝛿𝑝𝑞 ;  𝑎𝑝

†, 𝑎𝑞
† = [𝑎𝑝, 𝑎𝑞

 ] = 0
• Truncation with N×log(Λ) qubits
• Use boson modes, linear scaling in 𝑁

• Initialize 
• Begin with a simple & suitable input state. 

• Evolve simulator system
• Real 𝑈 𝑡 ~𝑒𝑖 ෡𝐻𝑡 (or imaginary 𝑉 𝜏 =  𝑒−𝐻𝜏) time evolution

• Measure Response Functions ⟨ ෠𝑂⟩



Ingredients of a Quantum Computation

• Initialize system (cool until relaxed into a lowest quantum mode) 

• Generate entanglement (quantum correlations)
• Volume law entanglement appears in

• i) critical states …. 
• ii) nuclear matter 2303.04799
• iii) Shor’s algorithm PhysRevA.96.062322 E.F.D.

• Interfere coherences constructively and destructively
• Quantum gates offer a systematic way to do this:

• E.g. Hadamard test on next slide

• E.g. bosonic ෡𝐷 𝛼 = 𝑒𝛼𝑎†−𝛼∗𝑎

• Definition: 
• Quantum Algorithm -- a sequence of quantum gates applied to perform a 

computational task

• Measurements: ℝ data

Charles Addams 1940

https://arxiv.org/pdf/2303.04799.pdf


The Only Quantum Circuit You’ll Ever Need

*Trotter (product) decompositions are recovered when U=V. 
In this case the ancilla is not required as it will always be measured in the 0 state and may be removed. 



1st Q. Algorithm: Stern Gerlach Apparatus
or local-, SU(2), basis rotations and measurement

Pauli/XYZ-basis transformations ⊂ S-G gate

Non-commuting observables! 𝜎𝑥, 𝜎𝑧 ≠ 0 

Ƹ𝑧 = ±1 
+1

−1



2nd Quantum Algorithm: Interferometry

Mach Zehnder Ramsey

Generalized “Hadamard” Test



3rd, & Ultimate, Quantum Algorithm: Linear 
Algebra over exponentially large spaces
• A quantum system/computer performs matrix (linear) 

algebra with exponentially reduced memory resources:
• 𝑛 qubits used to represent exponentially large, 𝒪(exp 𝑛 ), matrix 

algebra. Exponential reduction in memory requirements. 

• To be efficient, a polynomial, 𝒪(poly 𝑛 ), number of gate 
operations suffices to prepare the quantum algorithm’s output. 

• This is BQP which is ~ P as QMA ~ NP 

• Main takeaway/perspective is that quantum algorithms is a 
venue where we can (theoretically) perform, and compute 
with, linear algebra in exponentially large vector spaces with 
only 𝒪(poly 𝑛 ) resources.
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• Fundamental Theorem of Arithmetic:
– Every positive integer 𝑛 > 1 can be represented uniquely as 𝑛 = 𝑝1

𝑛1𝑝2
𝑛2 ⋯ 𝑝𝑘

𝑛𝑘  = ς𝑖=1
𝑘 𝑝𝑖

𝑛𝑖

• Can use decompose, and represent, integers as a product factorization. 

– Multiplicative Extensions: 
• Alternatively, complex numbers, multiplicative roots of unity. 
• E.g., with the modulo operation (e.g. mod5(12) = 2) we have multiplicative groups ℤ𝑛 = ℤ /𝑛ℤ . Elements represented as multiplication by generators 

of group cosets. 
• Represent group elements in terms of smaller set of generating elements. 

• Numbers can also be added. 
– For example, every positive number can be (non-uniquely) represented as 𝑛 = σ𝑖=1

𝑛 1. But this is way less efficient, especially if n is a 
large prime number (equipped with a succinct, and low entropy, product factorization representation)!

– We can add (and subtract) integers to get the group ℤ𝑛 

• We can add and multiply numbers together. 
– Ex 1: 5001 × 3001 = 5001 × 3000 + 1 = 5000 × 3000 + 32 × 7 × 127 = 15,008,001

• But then again 5001 = 3 × 1667 and 3001 is prime; so 15008001 = 3 × 1667 × 3001 is simpler ☺

– Ex 2: Integers: + operation, w/ inverse, and × operation, w/o divisive inverse, == mathematical ring 

• Matrices are the objects built from numbers and representing quantum operators. 
– You learned how to add, multiply, and decompose matrices in the past. 

• Unitary operations/matrices (or unitaries) will be constructed by similar techniques!
– Appropriate unitarity constraints apply. 

– 𝑈†𝑈 = 𝑈𝑈† = 𝕀

INTEGER ARITHMETIC INTUITION



𝒊 = 00 10

01

20

02

• ≈ 1023 particles condense into a discrete, symmetry-broken, crystalline 

configuration. Want to also study impurities, defects, etc therein.

• Negatively charged valence electrons electromagnetically interact with 

positively charged atomic lattice. Ab-initio Hamiltonian ෡𝐻 = ෠𝑇 + ෠𝑉 + ෠𝑉ext:

෡𝐻 = − ෍

𝑖

ℏ2𝛻𝑖
2

2𝑚e
+

1

2
෍

𝑖≠𝑗

e2

│ Ƹ𝑟𝑖 − Ƹ𝑟𝑗│
− ෍

𝑖,𝑗

𝑍𝑗e2

│ Ƹ𝑟𝑖 − ෠𝑅𝑗│

• Lattice model Hamiltonian: e.g., Hubbard model

෡𝐻 = −𝑡 ෍

𝑖,𝑗 ,𝜎

Ƹ𝑐𝑖𝜎
† Ƹ𝑐𝑗𝜎 + Ƹ𝑐𝑗𝜎

† Ƹ𝑐𝑖𝜎 + 𝑈 ෍

𝑖

Ƹ𝑐𝑖↑
† Ƹ𝑐𝑖↑ Ƹ𝑐𝑖↓

† Ƹ𝑐𝑖↓ − 𝜇 ෍

𝑖,𝜎

Ƹ𝑐𝑖𝜎
† Ƹ𝑐𝑖𝜎

A PHYSICAL MOTIVATION
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(real) Time-Evolution

• Many quantum algorithms aim to simulate the time evolution of a quantum system. And 
this is a paradigmatic and complexity theoretically important task. 

• But even if you doing another algorithm TE is either i) an algorithmic subroutine and/or ii) being 
used to realize each of the algorithm’s individual gates. 

• Hence, semi-tautologically, time evolution is the only quantum algorithm. 

Schrodinger equation is first order differential equation: 
iℏ𝜕𝑡 Ψ(𝑡) = 𝐻 𝑡 Ψ 𝑡

Formal solution is given by time ordered integral:

𝑈 𝑡 = 𝒯𝑒−
𝑖
ℏ 0׬

𝑡
𝑑𝑡′ 𝐻 𝑡′

This acts as :
𝑈 𝑡 Ψ 0 = Ψ 𝑡



Unitary Synthesis: Does it factorize?

‖ −  ‖ ≤ 𝜀
𝑈 𝑡 = 𝒯𝑒−

𝑖
ℏ 0׬

𝑡
𝑑𝑡′ 𝐻 𝑡′ 𝑈2

𝑈1
𝑈4

𝑈3 𝑈6

𝑈5

Then we can implement, e.g., 𝑒𝑖𝜃𝑋𝑌𝐼𝑍 ⋅ 𝑒𝑖𝜃𝐼𝑋𝑍𝑌𝐼



Error Analysis

• You have 𝜀 error per gate. The gate fidelity is FU = 1 − 𝜀

• After applying 𝑁 gates, the resulting fidelity is 𝐹𝑡𝑜𝑡 = 𝐹⊙𝑁 = 1 − 𝜀 𝑁. 

• Can re-express in distinct limits:
• If 𝜀 ≪ 1, using binomial expansion, we have 1 − 𝜀 𝑁 ≈ 1 − 𝑁𝜀. 
• So, if your error is very low, and you don’t apply too many gates, error scales linearly with 𝜀.
• “Error correction” reduces 𝜀𝑝ℎ𝑦𝑠  to exponentially small rates. In that case, algorithmic trotter product error 

rates are well defined, dominant, and scaling as above.
• I won’t go into error correction (see earlier presentations and topological tutorials)

• If 𝜀 ≪ 1 but 𝑁𝜀 ≫ 1, then 1 − 𝜀 𝑁 ≈ 𝑒−𝜀𝑁. 
• If error is too large, or low but applied too much, fidelity exponentially decays with 𝜀𝑁

• In a pre-errror-corrected world, typical experimental error sources 𝜀𝑝ℎ𝑦𝑠 ∼ 0.05.

• So, goal is 𝜀 ≪ 1 and 𝑁𝜀 ≪ 1

• In most theoretical algorithms one assumes physical error 𝜀𝑝ℎ𝑦𝑠 →  0*. 
• *Assuming some error correction mechanism.

• One then optimizes gates applied to minimize the algorithmic error 𝜀𝑎𝑙𝑔 →  0. 

𝑈𝑁⋯𝑈1 𝑈2

𝜀𝑡𝑜𝑡 = 𝜀𝑎𝑙𝑔 + 𝜀𝑝ℎ𝑦𝑠



2) Dynamics:
Hamiltonians vary greatly in their complexity. In turn, this complexity is inherited by the time 
dynamics:
• Efficient quantum Hamiltonian simulation: Given which an input state 𝜓 0 , prepare 

𝜓 𝑡 = 𝑈𝐼(H,t) 𝜓 0  to approximate 𝑈𝐴(H,t) 𝜓 0  with polynomial scaling resources 
(in system size and time) and a precision 𝜖 such that 𝑈𝐼 𝐻, 𝑡 − 𝑈𝐴 𝐻, 𝑡 ≤ 𝜖

• (Lie-)Trotter(-Suzuki) – approximate U as product of simpler unitaries                   poly(𝑁, 𝑡,
1

𝜖
)

• Random walk on graph — sparse interactions

• LCU — Factorize into a sum of terms                                                                   ℎ 𝑡 log
1

𝜖

• QSP — An efficient way to process information with a single ancilla               𝑡 + log
1

𝜖

• Oracles — Often literally defined in terms of matrix elements                       too obfuscated to say 

• Fast Forwarding — use of underlying symmetry                                            poly(N) +const(t)

1) State Preparation
Constructively interfering into ground-, or more difficult excited- and thermal-, states is 
likewise generically (QMA) hard. Given 𝜓 0   prepare 𝜓𝐼𝑑𝑒𝑎𝑙 ≈ 𝜓𝜃 = 𝑈(θ) 𝜓 0  such 

that 𝜓𝑇𝑎𝑟𝑔𝑒𝑡 − 𝜓𝜃 ≤ 𝜖. Often 𝜓 is defined as being a (lowest) eigenstate corresponding 

to a parent Hamiltonian 𝐻.

Block Encodings ⊕

Arithmetic Classification of Quantum Simulation

Exp log

H = σ𝑐𝑗
෡ℎ𝑗

U H, t = 𝒯e
−𝑖𝑡

ℏ
𝐻Product Encodings ×



Trotter (Product) Error Analysis Continued

The Baker-Campbell-Housedorff formula, or its related forms, imply

  𝑒𝑡(𝑋+𝑌) = 𝑒𝑡𝑋𝑒𝑡𝑌 × 𝑒−
𝑡2

2!
[𝑋,𝑌] × 𝑒−

𝑡3

3!
𝑋, 𝑋,𝑌 + 𝑌, 𝑌,𝑋 × ⋯ = ς𝑛 𝑒

𝑡𝑛

𝑛!
መ𝐶𝑛

Then, 𝑒𝑡(𝑋+𝑌) = 𝑒𝑡𝑋𝑒𝑡𝑌 × (multiplicative error)

Alternatively, 𝑒𝑡(𝑋+𝑌) = 𝑒𝑡𝑋𝑒𝑡𝑌 + (additive error)

Where “m.e.” and “a.e.” are functions of nested commutators ([𝑋, 𝑌]) of 𝑋 and 𝑌



Trotter Error for Product Decompositions
Existence:            ;         More systematic/intuitive approach? 

                                          For each individual term:

Lie-Trotter:

Suzuki 1970-90s:

 𝑚th −order formulas 

 𝜀𝐴𝑑𝑑 ∝ 𝒪(𝑡𝑚+1)

Childs, Su, et. al., Theory of Trotter Error with Commutator Scaling, PRX 2021

More related techniques emerging recently. 

𝑒𝑡𝐴 𝑒𝑡𝐵 =  𝑒𝑡 𝐴+𝐵 +  𝑂 𝑡2𝑓(𝐴, 𝐵) +  …
* convergent series when 𝑡𝐴, 𝑡𝐵 < 1

𝑒𝑡 𝐴+𝐵 = lim
𝑛→∞

𝑒𝛿𝑡𝐴 𝑒𝛿𝑡𝐵 𝑛
    with   𝛿𝑡 =

𝑡

𝑛
 implies

𝐻 = 𝑐𝑗  Ƹ𝑝𝑗

→
Hale. F.  Trotter, Proc. Am. Math. Phys. 10, 545 (1959).



https://itensor.github.io/ITensors.jl/dev/tutorials/MPSTimeEvolution.html

Trotter Decomposition Zoo

Tranter A, Love PJ, Mintert F, Wiebe N, Coveney PV. Ordering of Trotterization: Impact on Errors in Quantum 
Simulation of Electronic Structure. Entropy (Basel). 2019 doi: 10.3390/e21121218

Grimsley HR, Claudino D, Economou SE, Barnes E, Mayhall NJ. Is the Trotterized UCCSD Ansatz Chemically 
Well-Defined? J Chem Theory Comput. 2020 doi: 10.1021/acs.jctc.9b01083



Up Next: Scattering

The inelastic scattering event on 
highway I-40 causing traffic today

𝑣1

𝑣2

Classical elastic scattering event with energy and momenta conserved

𝑣2

𝑣1

Feynman diagram depicting a quantum scattering process



4th quantum algorithm: Ancilla/Reservoir/Environment-Scattering

Time →

time

Scattering

𝑎 𝑎𝑛𝑐𝑖𝑙𝑙𝑎 𝑏 𝑎𝑛𝑐𝑖𝑙𝑙𝑎

Ψ  

𝑆 𝑎,𝑏 Ψ

𝑆 𝑎,𝑏 Ψ  



(Additive matrix-element) Block Encodings

• An operator 𝑋 is block encoded in a standard form 
(Low, Chuang 2019) if ∃ a unitary-oracle 𝑈 such that 

• (⟨𝑝|𝑎⊗ 𝟙𝑠) 𝑈( 𝑝 𝑎 ⊗ 𝟙𝑠) = 𝑋

• U acts on ℋ𝑎 ⊗ ℋ𝑠 where a(s) refers to the ancilla 
(system) and we can prepare 𝑝 𝑎 = 𝑃 0 𝑎

• LCU (next slide)

• Quantum walk, sparse Hamiltonian (Childs) 

• Quantum signal processor (Low, Chuang 2019)
• These algorithms provide an exponential improvement in 

precision 
1

𝜀
→

1

log(𝜀)
. 

• From convergence of Taylor series 𝑒𝑖𝐻𝑡 = σ𝑘=0
𝑘=Λ 𝑖𝐻𝑡 𝑘

𝑘!
+ 𝜀

𝑈 =
𝑋 ⋅
⋅ ⋅

𝑃 𝑃† 

𝑈
0 𝑎

𝜓 𝑠

0 𝑎

𝑋 𝜓 𝑠



Linear combination of unitaries (LCU)*

LCU: sum of many unitaries

Example: sum of two unitaries

Quantum circuit applying an operator 𝑈 = 𝜅𝑈𝑎  +  𝑈𝑏 
given a measurement outcome of zero.

A
n

ci
lla

ry
 q

u
b

it
s

Ancilla

[*] A. M. Childs and N. Wiebe, Quantum Infor. Comput. 12, 901 (2012).

Special cases

  𝑐𝑞
†~𝑋𝑞 + 𝑖 𝑌𝑞  

 𝑐𝑞
 ~𝑋𝑞 − 𝑖 𝑌𝑞

𝐴 = ෍

𝑗=1,…,𝑑

ℎ𝑗

ℎ
 |𝑗⟩⟨0| 

𝐵 = 𝐴−1

SEL = ෍

𝑗=1,…,𝑑

 |𝑗⟩⟨𝑗| ⊗ 𝜎𝑗 

𝐻|𝜓⟩

0 ⋯ 0|𝑈𝐵.𝐸.( 0 ⋯ 0 𝐴 ⊗ |𝜓⟩) = H|𝜓⟩

𝑈𝐵.𝐸. =
ℋ ⋅
⋅ ⋅

𝑈𝑗 = 𝜎𝑗



General workflow for simulating quantum many-particle systems

Simulation on Quantum Computers Many-particle Quantum Physics

Quantum 
States

Prepare, e.g, 
ground state 

(GS)

Measure 
observables 

in GS

System 
Dynamics

Prepare GS 

Time-evolve 
system

Measure 
observables

Green’s 
functions 

𝐺(𝑡)

State preparation 

Unitary time 
evolution

Measurement

Algorithms 
suitable for 

fault-
tolerant 

quantum 
devices?



How To Evaluate My Correlation Function?

LCU expansion

• Measuring single-particle correlation function 

⟨𝑐𝑞
†𝑐𝑞+1

 ⟩

• Modulo the fermionic ℤ2 phases, the field operators 

are 𝑐𝑞
†~𝑋𝑞 + 𝑖 𝑌𝑞  ;  𝑐𝑞

 ~𝑋𝑞 − 𝑖 𝑌𝑞

– 2 term LCU

• ⟨𝑐𝑞
†𝑐𝑞+1

 ⟩ ∝ ൻ

ൿ

 𝑋𝑞𝑋𝑞+1 + 𝑌𝑞  𝑌𝑞+1 + 𝑖 ൫

൯

𝑌𝑞𝑋𝑞+1 −

𝑋𝑞𝑌𝑞+1

– 4 term LCU 

Linear expansion

• ⟨𝑐𝑞
†𝑐𝑞+1

 ⟩ ~ ⟨𝑋𝑞𝑋𝑞+1⟩ + ⟨𝑌𝑞  𝑌𝑞+1⟩ +  +𝑖 (⟨𝑌𝑞𝑋𝑞+1⟩ −
⟨𝑋𝑞𝑌𝑞+1⟩)

• Measure each term individually and sum together 
classically 

Quantum Sum Classical Sum



Projection, ෠𝐹 = 𝑒−
1

2
𝑡2 ෡𝐻2

, and Resolvent, ෠𝑅 =
1

𝜔− ෡𝐻
, operators

1. Prepare ground state (GS) by ෠𝐹 𝜓trial ≈ 𝜓GS

–  
– Requires: GS energy estimate to shift the spectrum as ෡𝐻 − 𝐸0

– ෠𝐹 nonunitary: implement via LCU of the Fourier transform (for Gaussian, also called 
Hubbard-Stratonovich transform)

2. Dynamics:

 𝐺𝑖𝑗 𝜔 = 0׬

∞
𝑑𝑡𝐺𝑖𝑗 𝑡 𝑒𝑖 𝜔+𝑖Γ 𝑡 = 𝜓GS Ƹ𝑐𝑖 𝜔 + 𝑖Γ − ෡𝐻

−1
Ƹ𝑐𝑗
† 𝜓GS

– Direct computation of frequency-domain Green’s function (G)

– ෠𝑅 = 𝜔 + 𝑖Γ − ෡𝐻
−1

 nonunitary: implement via LCU of the Fourier-Laplace transform



LCU unified quantum framework with time-evolution oracle



Results and complexity scaling

• Projection operator ෠𝐹 = 𝑒−
1

2
𝑡2 ෡𝐻2

– 𝑂
𝛼

𝛾Δ
log

1

𝛾𝜂
 queries to the time evolution oracle

– 𝑂 log
1

Δ
+ log log

1

𝛾𝜂
 ancilla qubits

▪ 𝛼 is 𝐿1 norm of coefficients in LCU
▪ Δ is a lower bound on the spectral gap Δ𝑠 of the system
▪ 𝛾 is a lower bound on the overlap of the trial state and true GS
▪ 𝜂 is the additive error in the state vector

• Resolvent operator ෠𝑅 = 𝜔 + 𝑖Γ − ෡𝐻
−1

– 𝑂
1

Γ2  log
2

Γϵ
 queries to the time evolution oracle

– 𝑂 log
1

Γ𝜖
+ log log

2

Γ𝜖
 ancilla qubits

▪ Γ is the artificial broadening
▪ 𝜖 is the allowable error in constructing the resolvent



Isotropic, ferromagnetic Heisenberg model

L-site chain (OBC)

෡𝐻 =  ෍

𝑗=1

𝐿

෡𝐻𝑗,𝑗+1

where

෡𝐻𝑗,𝑗+1  = −
1

4
𝑋𝑗𝑋𝑗+1 + 𝑌𝑗𝑌𝑗+1 +

1

4
1 − 𝑍𝑗𝑍𝑗+1

Trial State: 1 … 10 … 0  

A. N. Chowdhury and R. D. Somma, Quantum Information and Computation 
17, 41 (2017)
Ge, Tura, and Cirac, J. Math. Phys. 60, 022202 (2019)



Hubbard Model

We want to implement 

𝑒−
𝑡2

2  ෡𝐻2

𝜓trial ≈ 𝜓GS

Trial State:
▪ ↑0↓1 ⋯ ↑𝐿−1↓𝐿 , 𝐿 even
▪ ↑0↓1 ⋯ ↑𝐿−1 , 𝐿 odd

෡𝐻Hubbard = −𝑡 ෍

𝑖𝑗 ,𝜎

Ƹ𝑐𝑖𝜎
† Ƹ𝑐𝑗𝜎 + 𝑈 ෍

𝑖

ො𝑛𝑖↑ ො𝑛𝑖↓



Hubbard Model Dynamics

𝐺𝑖𝑗
𝑒

(𝑧) = 𝜓GS Ƹ𝑐𝑖
1

𝜔+𝑖Γ − ෡𝐻
Ƹ𝑐𝑗
†|𝜓GS⟩ 

𝜔 + 𝑖Γ − ෡𝐻
−1

→ −𝑖 න
0

∞

𝑑𝑡 𝑒𝑖 𝜔+𝑖Γ− ෡𝐻 𝑡

≈ −𝑖 ෍

𝑘=0

𝑁𝑐

Δ𝑡 𝑒𝑖 𝜔+𝑖Γ− ෡𝐻 𝑘Δ𝑡



Simulation of a time independent Hamiltonian:

Time evolution operator is:

Single exponential circuit is given as:

Two main issues:     

 1) 4𝑛 − 1 many generators       

 2) How to determine angles?

ALGEBRAIC PRODUCT 
DECOMPOSITIONS
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Cartan Decomposition and KHK Theorem





Earp, Henrique N. Sa, & Pachos, Jiannis K. (2005). A constructive algorithm for the Cartan decomposition of SU(2N). Journal 

of Mathematical Physics, 46(8), 082108-08210811. doi:101063/12008210

Determining Parameters



Earp, Henrique N. Sa, & Pachos, Jiannis K. (2005). A constructive algorithm for the Cartan decomposition of SU(2N). Journal 

of Mathematical Physics, 46(8), 082108-08210811. doi:101063/12008210

Determining Parameters



Algorithm

1) Generate Hamiltonian algebra g(H)

2) Find a Cartan decomposition such 

that H is in m

3) Fit parameters via minimizing f(K) 

4) Build the circuit using K and h

5) Then simulate for any time you want!



Application: Anderson Localization

● We apply our method to the following Hamiltonian for    

n = 10, with random magnetic fields to the initial state                                                          

                                    :

● In the presence of, e.g. a random magnetic field, the 

spin excitations are Anderson localized*. We measure

(*) Bucaj, Valmir. (2016). arXiv: Spectral Theory : 1608.01379

(**) Jović Savić, Dragana & Kivshar, Yuri & Denz, Cornelia & Belić, Milivoj. (2011). Phys. Rev. A. 83.10.1103/PhysRevA.83.033813.



Circuits



Results



Cartan Conclusions

● We provide a generic method to build circuits 

for time evolution of spin systems.

 

● 𝑂(𝑁2, 𝑡0 = 1) circuit for TFIM, TFXY, XY 

● Only local minimum needed for optimization

● Optimize only once

10.1103/PhysRevLett.129.070501 Kökcü, Steckmann, Wang, Freericks, Dumitrescu, Kemper
https://github.com/kemperlab/cartan-quantum-synthesizer



Simulation on Quantum Computers Many-particle Quantum Physics

Quantum 
States

Prepare, e.g, 
ground state 

(GS)

Measure 
observables 

in GS

System 
Dynamics

Prepare GS 

Time-evolve 
system

Measure 
observables

Green’s 
functions 

𝐺(𝑡)

State preparation 

Unitary time 
evolution

Measurement

Algorithms 
suitable for 

NISQ 
devices?

Fast Forwarding Application: DMFT 

NISQ algorithms: simulate GF of dynamical mean-field theory (DMFT) for the 

Hubbard model on noisy intermediate-scale quantum (NISQ) devices

 Intro to DMFT (a map from Hubbard model to Anderson Impurity model via GF)

 Fast-forwarding circuit by Cartan decomposition of dynamical unitary group

Ref: arXiv:2112.05688
10.1103/PhysRevResearch.5.023198 



3.2 DMFT: a map from Hubbard model to Anderson Impurity model

Σ 𝜔 = Σimp 𝜔 ⟹
Dyson′s Eqn.

𝐺 𝐤, 𝜔 , 𝐺imp 𝜔

෍

𝐤

𝐺 𝐤, 𝜔 = 𝐺imp 𝜔

2-site (1 impurity + 1 bath) Anderson Impurity Model:

෡𝐻AIM =
𝑉

2
𝑋0𝑋1 + 𝑌0𝑌1 + 𝑋2𝑋3 + 𝑌2𝑌3 +

𝑈

4
𝑍0𝑍2

𝑡

bath levels



3.3 New specific workflow for simulation DMFT/AIM GF

Discrete Fourier Transform



3.4 Cartan decomposition of the Hamiltonian algebra



3.5 Manually optimized circuits



3.6 Noisy results (IBM device)



3.7 Correct physical results 

The first computation of metal-insulator phase diagram using noisy digital quantum hardware.



Quantum Arithmetic with Symmetry

• Intuition: 
• Euler identity 𝑒𝐴 = cos 𝐴 + 𝑖sin(𝐴) is a decomposition into even (cos) and 

odd (sin) functions (or symmetric and anti-symmetric forms)

• cos(−𝑥)  =  cos(𝑥) ;  sin(−𝑥)  =  −sin(𝑥)
• ±1 eigenvalues of spatial inversion operation 𝑥  – 𝑥

• cos 𝐻𝑡 =
𝑒−𝑖𝐻𝑡 + 𝑒𝑖𝐻𝑡

2

• sin 𝐻𝑡 =
𝑒𝑖𝐻𝑡 − 𝑒−𝑖𝐻𝑡

2𝑖
• A basis for engineering (spectral) quantum filter functions 

• Application 1:  A  B Inversion Symmetrized Trotter formula

• Application 2: Derivation of Ancilla as a measurement pointer state



Linear Combination of Trotter Unitaries: Sum and Product

▪ 𝐻 = 𝐴 + 𝐵

▪ 𝑈 𝑡 = 𝑒−
𝑖𝑡

2
𝐴+𝐵

▪ 𝑈𝐴𝐵(𝑡) = 𝑒−
𝑖𝑡𝐴

2  𝑒−
𝑖𝑡𝐵

2

▪ 𝑈 – 𝑈𝐴𝐵  = 𝒪(𝑡2 [𝐴, 𝐵])

▪ 𝑈𝐵𝐴(𝑡) = 𝑒−
𝑖𝑡𝐵

2  𝑒−
𝑖𝑡𝐴

2

▪ 𝑈 – 𝑈𝐵𝐴  = 𝒪(𝑡2 [𝐴, 𝐵])

▪ 𝑈+  =
𝑈𝐴𝐵 + 𝑈𝐵𝐴

2
▪ 𝑈 – 𝑈+  = 𝒪(𝑡3 ([𝐴, [𝐴, 𝐵]  +  𝐵 𝐴))



Only Quantum Circuit You’ll Ever Need

*Trotter (product) decompositions are recovered when 
U=V.  The ancilla is not required, decouples and will 
always be measured in the 0 state. It may thus be 
removed. 

2403.05470



The Only Quantum Circuit You’ll Ever Need
X ⋅ 𝕀 ∓ 𝑍 = X ± iY = 𝕀 ± 𝑍 ⋅ X

𝕀 Z
𝕀 ± 𝑍

2X

=

𝑈+            𝑈−

=
𝐻 𝐻0 0  |1⟩⟨1|

time

𝑖
𝑖

ҧ𝑖

=
Π±

|𝑖⟩

|𝑖⟩ | ҧ𝑖⟩ |𝑖⟩ | ҧ𝑖⟩
+ −

Note the state-dependent 
weighting factors

‖Ui|Ψ⟩‖

Trace over, discard ancilla



Mike & Ike, Chapter pp362                                                                   LCU of   
𝕀

2
±

𝑍

2

H H

𝜌

0 𝐸

0

0 1

1

𝕀

1 + 𝑍

2
= |0⟩⟨0|

1 − 𝑍

2
= |1⟩⟨1|

0

0 1

1

ℰ 𝜌

ℰ 𝜌 = ෍

𝜎=±

𝕀

2
𝜎

𝑍

2
𝜌

𝕀

2
𝜎

𝑍

2



Summary
• Algorithmic perspective and classification of dynamic simulations.

• Unification of state-preparation and dynamics algorithms with ancilla-
mediated quantum integral transformations (2112.05731):

• Projection – Hubbard-Stratonovic
• Propagation – Fourier-Laplace 

• Algebra-based product encoding algorithm is used to recover a metal-
insulator phase-transition (PhysRevLett.129.070501 , PhysRevResearch.5.023198).

• Considered all ancilla outcomes and the quantum channels they construct 
on the principal system (2403.05470). 

• Generalization of time-evolution operator decomposition in terms of addition 
composed with multiplication. 

• Defining projective measurements gives operational definition for ancilla 
measurement pointer states



Quantum Supremacy Outlook
* a biased perspective

Landau theory of symmetry breaking and phase transitions

(BCS) Superconductivity, Josephson junction, high-Tc(,) high-Pressure

Transistor, STM, MFM, …, Transmon

Phonons, polaritons, polarons, solitons, vortices, magnons, anyons,… 

Onsager

Thermo-electrics, spin-tronics, valley-tronics, quantum information 

QHE (topology, R =
ℎ

𝑒2𝜈
) – K.V.K., Laughlin, Haldane 

Graphene and Moire

WKB, BTK, BKT, …, LTS,LCU,QSP, ETC

Looking Forward:

It’s a long & challenging road to universal quantum computing.

Luckily, ∃ many big discoveries along the way.

1911

2024++

“I gave the world quantum advantage 113 years ago…. 
And all I got was a lousy phenomenological theory of superconductivity”



NSCU → UMD
2x ORNL SULI 

UTK , DOEGRF → Q.C.Inc. 

ORNL

NSCU Georgetown

U(2years)|PhysRevLett.129.070501⟩ = |PhysRevResearch.5.023198⟩

ORNL

arXiv:2112.05731 – Integral Transformations

arXiv:2403.05470 – Symmetric Forms
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