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Paradoxical Cat States

* |Quantum Computing) =
 perfectly |isolated from) + |controllable via) the outside environment

. iz |physics) + |computer science)] ~ \/% [lanalog) + |digital)]

. 13 |qubit) + |error correction) + |algorithm)]

+ LLINISQ) + [BQP)] = = [[epnysicat = 02) + |Eaigoricnmic = 2 X 10720)
. iz |physical error) + |algorithmic error)]

. iz |uses heat producing fridges) + |reversible (zero heat loss))]

. \/% |experimental demonstrations quantifying physical error) +

|experimentally impossible (today) exponentially fast matrix algorithms)]

e Measurement-based Zeno-Effect & Quantum Error Correction

dl Dee:




Simulation Scenarios:

* Physical Experiment:
. %hemistry, lithography, etc. Make perfect sample. Cool to low

* Probe system from external environment.
* e.g. electro/thermal transport, ARPES, beams of all sorts

* Classical Computation:
« Memory management in right panel

* Quantum Computation:

* Model target system/Explicit problem encoding
* Discretize quantized fields on a lattice e.g. in 2"d quantization:
o N _ . A o —
Electrons {cp,cq} = 8pq {cp,cq} ={cp ¢} =0
* ~N gqubits for N fermion modes
* Phonons, photons [ap, a;r] =08pq ; [a;g, ag] = [ap,aq] =0
* Truncation with NXxlog(A) qubits
* Use boson modes, linear scaling in N

* Initialize

* Begin with a simple & suitable input state.
* Evolve simulator system

* Real u@~eit (or imaginary V(1) = e:HT) time evolution
* Measure Response Functions (O)

photon
source

hv

sample

energy
analyzer

Measurement

o
@




Ingredients of a Quantum Computation

* |nitialize system (cool until relaxed into a lowest quantum mode)

* Generate entanglement (quantum correlations)

* Volume law entanglement appears in

* i) critical states ....
* ii) nuclear matter 2303.04799
e iii) Shor’s algorithm PhysRevA.96.062322 E.F.D.

* Interfere coherences constructively and destructively

* Quantum gates offer a systematic way to do this:
* E.g. Hadamard test on next slide

A t_ g
* E.g. bosonic D(a) = e%* ~* ¢
* Definition:
* Quantum Algorithm -- a sequence of quantum gates applied to perform a
computational task %

STANDARD
WIRE GAUGE

* Measurements: R data


https://arxiv.org/pdf/2303.04799.pdf

The Only Quantum Circuit You’ll Ever Need
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FIG. 1. Selecting U = V1 = ¢ " we define a random spectral walk (Sec. ). Using U = e*e'® and V = e'Pef?, the
quantum circuit acts by the BCH-like series that is symmetric with respect to the inversion A <+ B. This is used to ffxctorlze
time-evolution (Sec. ). Setting different times ({ — 0;,03) enables a symmetric variational ansatze (Sec. ). Last,
setting U = X; and V' = 1Y) for an array of qubits {q;}fil and concatenating the gadget N-times performs the measurement
of Mermin polynomial My with a linear depth circuit (Sec. ). The symmetry of the operator applied to |V) is contingent,
on a measurement observing the ancillary qubit in the (|1)) |0) state. Note that U4+ are not unitary and that the principle
system’s final state Uy |V) is normalized upon measurement of the ancilla qubit, due to the measurement postulate.

*Trotter (product) decompositions are recovered when U=V.
In this case the ancilla is not required as it will always be measured in the 0 state and may be removed.



15t Q. Algorithm: Stern Gerlach Apparatus

or local-, SU(2), basis rotations and measurement
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24 Quantum Algorithm: Interferometry
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Ramsey 1
5!

Im (y|Ul4))
= Re(y|Uly)

/%=

S

(U +U) |y

impoxt numpy as np

import qgiskit
from giskit_experiments.library impoxt T2Ramsey ‘0> — H T H

qubit = © / U
# set the desired delays /

delays = list(np.arange(le-6, 50e-6, 2e-6))

|oY o7e [¥) N

# Create a T2Ramsey experiment. Print the first circuit as H ®

expl = T2Ramsey((qubit,), delays, osc_freq=1e5)
|¥% L s

print(expl.circuits()[0])

e e e Generalized “Hadamard” Test
c: 1/ i Lo
° b
o) (HHA
A HE—
g %) U(t)




34 & Ultimate, Quantum Algorithm: Linear Q

.

-

Algebra over exponentially large spaces =

|1

* A quantum system/computer performs matrix (linear)
algebra with exponentially reduced memory resources:

* n qubits used to represent exponentially large, O (exp(n)), matrix
algebra. Exponential reduction in memory requirements.

* To be efficient, a polynomial, O (poly(n)), number of gate
operations suffices to prepare the quantum algorithm’s output.

* This is BQP which is ~ P as QMA ~ NP

* Main takeaway/perspective is that quantum algorithms is a
venue where we can (theoretically) perform, and compute
with, linear algebra in exponentially large vector spaces with
only O(poly(n)) resources.

>0
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INTEGER ARITHMETIC INTUITION

Fundamental Theorem of Arithmetic:

— Every positive integer n > 1 can be represented uniquely as n = le
e Can use decompose, and represent, integers as a product factorization.

— Multiplicative Extensions:
e Alternatively, complex numbers, multiplicative roots of unity.

. Eicg., with the modulo operation (e.g. mods(12) = 2) we have multiplicative groups Z,, = Z /n’Z . Elements represented as multiplication by generators
of group cosets.

e Represent group elements in terms of smaller set of generating elements.

1,2 ., Tk _

py 2 ppt =TI p"

Numlbers can also be added.

— For example, every positive number can be (non-uniquely) represented as n = )l ; 1. But this is way less efficient, especially if n is a
large prime number (equipped with a succinct, and low entropy, product factorization representation)!

— We can add (and subtract) integers to get the group Z,

We can add and multiply numbers together.
~ Ex1:5001 x 3001 = 5001 x (3000 + 1) = 5000 x 3000 + 32 x 7 x 127 = 15,008,001

— Ex 2: Integers: + operation, w/ inverse, and X operation, w/o divisive inverse, == mathematical ring

Matrices are the objects built from numbers and representing quantum operators.
—  You learned how to add, multiply, and decompose matrices in the past.

Unitary operations/matrices (or unitaries) will be constructed by similar techniques!
— Appropriate unitarity constraints apply.

- Utu=uut =1



A PHYSICAL MOTIVATION

~ 1023 particles condense intfo a discrete, symmetry-broken, crystalline
configuration. Want to also study impurities, defects, etc therein.

Cu0,

Negatively charged valence electrons electromagnetically interact with

positively charged atomic lattice. Ab-initio Hamiltonian H =T + V + Vext:  ao,

_ hzvz Z;e?
N T A
2me 2 |r—r| - 1“‘1-—R-|

i,j J

Lattice model Hamiltonian: e.g., Hubbard model

= —t Z (cwc](, + ¢ cw) + UZ chchllcll uz cmcw

(i,j)o

TE
[001]

orris et al., Science 326, 411 (2009)




(real) Time-Evolution

 Many quantum algorithms aim to simulate the time evolution of a quantum system. And
this is a paradigmatic and complexity theoretically important task.

* Buteven if ?/ou doing another algorithm TE is either i) an algorithmic subroutine and/or ii) being
used to realize each of the algorithm’s individual gates.

* Hence, semi-tautologically, time evolution is the only quantum algorithm.

Schrodinger equation is first order differential equation:
ihd,[¥(t)) = H(O)|P(¢))

Formal solution is given by time ordered integral:
Lt oy /
U(t) = Te hlo A(t)

This acts as :

U@)[¥(0)) = [¥())



Unitary Synthesis: Does it factorize?

‘ ‘ o Ut) = Te_if.l fot dt’ H(t") I

POIXZYT = &

Then we can implement, e.g., elOXYIZ | i0IXZYI

[U,
Uy
u, [ 1Yz
— ] Us
r—— - —— - — = — =
0), — T I H
|
|
v) UV
L




Error Analysis 7 B N

Etot = Ealg T Ephys

* You have ¢ error per gate. The gate fidelityisFy =1 — ¢
« After applying N gates, the resulting fidelity is F,,; = FON = (1 — ¢)V.

e Can re-express in distinct limits:
 If |e] < 1, using binomial expansion, we have (1 — &)V ~ 1 — Ne.
* So, if your error is very low, and you don’t apply too many gates, error scales linearly with €.

* “Error correction” reduces |ephys| to exponentially small rates. In that case, algorithmic trotter product error
rates are well defined, dominant, and scaling as above.

* |won’t go into error correction (see earlier presentations and topological tutorials)

e If|le] K 1but|Ne| > 1, then (1 — &)V = eV,
* If erroris too large, or low but applied too much, fidelity exponentially decays with eN
* |In a pre-errror-corrected world, typical experimental error sources |ephy5| ~ 0.05.

* So,goalis|s] K 1and|Ng| K 1

* In most theoretical algorithms one assumes physical error &,,,; > 0*.
e *Assuming some error correction mechanism.

* One then optimizes gates applied to minimize the algorithmic error €4, — 0.



Arithmetic Classification of Quantum Simulation

2) Dynamics:

Hamiltonians vary greatly in their complexity. In turn, this complexity is inherited by the time

dynamics:

* Efficient quantum Hamiltonian simulation: Given which an input state [y (0)), prepare
|w(t)) = U;(H,t) [ (0)) to approximate U, (H,t) |1 (0)) with polynomial scaling resources
(in system size and time) and a precision € such that ||U;(H,t) — U,(H,t)|| < €

(Lie-)Trotter(-Suzuki) — approximate U as product of simpler unitaries poly(N, t, i)

Random-walk-on-graph-—-sparse interactions

LCU — Factorize into a sum of terms ||h||tlog§

QSP — An efficient way to process information with a single ancilla t+ logi

Oracles — Often literally defined in terms of matrix elements too obfuscated to say
Fast-Forwarding.—-use of underlying.symmetry poly(N) +const(t)

1) State Preparation

Constructively interfering into ground-, or more difficult excited- and thermal-, states is
likewise generically (QMA) hard. Given [y (0)) prepare |Y;4eq1) = [Wg) = U(0) | (0)) such
that |||1/1Target) — |1/J9)|| < €. Often ¢ is defined as being a (lowest) eigenstate corresponding
to a parent Hamiltonian H.

Exp g & 7\ log




Trotter (Product) Error Analysis Continued

The Baker-Campbell-Housedorff formula, or its related forms, imply

2 .3 \
ptX+Y) — otX oty 5 o5 XY] o KXYl +[vIv ]|} oo [1,, e’

LXHY) = X etY x (multiplicative error)

Then, e

Alternatively, et *Y) = otXotY 4 (additive error)

Where “m.e.” and “a.e.” are functions of nested commutators (| X,Y]) of X and Y



Trotter Error for Product Decompositions

Existence: Uty=e"*= 1] gii?" More systematic/intuitive approach?
] gicsu(2n)
— A T z {1}
H —_ y p] For each individual term: GOIXZYT = ol & &
J {i—e-fm-o—it
Lie-Trotter:

etA+B) — |im (94 ¢0tB)"  with 6t =%implies — ethetB = otA+B) 4 O(t2f(4,B)) + ..
" * convergent series when tA4,tB < 1
Hale. F. Trotter, Proc. Am. Math. Phys. 10, 545 (1959).

. A B H xm+1
Suzuki 1970-90s: explx(4 + B)] = | £, PR + 0 — (1.3)
mth —order formulas for the approximant f,, (4,8) in (1.2). Thus we find that the
Eadg K O(tm"'l) convergence of our new scheme is extremely rapid for

x/n<1. This choice of decomposition is practically impor-
tant in quantum Monte Carlo simulations.*”’

Childs, Su, et. al., Theory of Trotter Error with Commutator Scaling, PRX 2021
More related techniques emerging recently.



Trotter Decomposition Zoo

https://itensor.github.io/ITensors.jl/dev/tutorials/MPSTimeEvolution.html

— o~ Thjj+1/2

hjj+1 =55 .7+1+ S .7+1+ S S.H-l

[4)

Tranter A, Love PJ, Mintert F, Wiebe N, Coveney PV. Ordering of Trotterization: Impact on Errors in Quantum
Simulation of Electronic Structure. Entropy (Basel). 2019 doi: 10.3390/e21121218

Grimsley HR, Claudino D, Economou SE, Barnes E, Mayhall NJ. Is the Trotterized UCCSD Ansatz Chemically
Well-Defined? ) Chem Theory Comput. 2020 doi: 10.1021/acs.jctc.9b01083

PHYSICAL REVIEW RESEARCH 4, 033193 (2022)

—Shy g e—§h3.4

e—ahz’_g e_ah‘ij

FIG. 1. Diagrammatic representation of the TEBD algorithm for
a quantum lattice system of five sites with nearest-neighbor interac-
tions. The full Hamiltonian is split into two parts, H = Hygq + Heven
with Hogq = h1 2 + h34 and Heyen = hy 3 + hys. The odd and even
numbered two-site local evolution operators are alternatively applied
to the wave function represented by a matrix product state (MPS)
[74].



The inelastic scattering event on
highway I-40 causing traffic today

_'rg(2TT)4!'$( P +PD_F|:)
" i IR
P
i I F
Py
D
. |
—ig(27) 8(P,—P,—P)

Classical elastic scattering event with energy and momenta conserved

Feynman diagram depicting a quantum scattering process



Ath quantum algorithm: Ancilla/Reservoir/Environment-Scattering

time

{a et et (ool o U+, o 1) (ool © 1+ 11, © V) - (Hal0),) o1

(1], H.
_ {0l 41, 00, +11),
= e L (Jool, 9 U+ 11, @ V) - e R e

(00),U+(11),V UV _
9 T2 T

Us.

2

|1)H%EU_

O H T I H[— A
U

UL|V)
V) V A
Time =
|@Yanciia \ / 1b)ancitia

Scattering

/  » S{a,b} |W>
|¥)

|S{a,b}|Lp> |



(Additive matrix-element) Block Encodings

An operator X is block encoded in a standard form
(Low, Chuang 2019) if 3 a unitary—oracle U such that

(pla® 1) U(lprg ® 1) =

U acts on H, @ H, where a(s) refers to the ancilla
(system) anélwe can prepare |[p), = P|0),

0)a
LCU (next slide) Y)s

Quantum walk, sparse Hamiltonian (Childs)

Quantum signal processor (Low, Chuang 2019)

* These angnthm; provide an exponential improvement in
precision — - -

log(e)’ (it
. i e th
* From convergence of Taylor series et = Y'k=1 -

+ €

10)a

X|)s



Linear combination of unitaries (LCU)”

Example: sum of two unitaries

Ancilla  |0) ——V, T T VIi—0)

) U0,

Quantum circuit applying an operator U = kU, + U,
given a measurement outcome of zero.

Special cases

K —1 + ]
: E+l o /r+1 Cq~Xq T 1Yy
V= |V

vVEF1 k+1

[*] A. M. Childs and N. Wiebe, Quantum Infor. Comput. 12, 901 (2012).

Ancillary qubits

H= Zhj(fj
J

j=1,..d

LCU: sum of many unitaries 3

Z j”? 0

SEL= " 1))l ® o’ Uss. = (7

= A_l

HIp)

-0y — o . i [0y |
0) - 1 o
A B
\ |0> - ¢ *{ |0>]
) Uy HUp - — Uk
U] = o/
{SELECT(U) |

(0--0|Upg (l0---0)4 ® [¥)) = H|Y)



General workflow for simulating guantum many-particle systems

Simulation on Quantum Computers

Many-particle Quantum Physics

Green’s
functions

G(t)

Algorithms
suitable for
fault-
tolerant
quantum
devices?

N/




How To Evaluate My Correlation Function?

LCU expansion

* Measuring single-particle correlation function
(cqCqsr)

* Modulo the fermionic Z, phases, the field operators
are c2;~Xq +iY, ; cg~Xqg—1Y,
— 2 term LCU

o (clegin) < (XgXgrr + Yy Vour + i (Yo Xge1 —
Xq¥q+1))
— 4term LCU

Quantum Sum

Linear expansion

o (cleqin) ~ (XgXqu1) + (Vg Yarr) + +i (Yo Xg41) —

(Xq¥q+1))

* Measure each term individually and sum together
classically

Classical Sum



L A _li2p2 A 1
Projection, F = e 2~ 7 , and Resolvent, R = —, operators

1. Prepare ground state (GS) by F|tptrial) ~ “PGS)

— |EoXEo| + Z e~ 3(BaE0P™ | p v |
n#0
— Requires: GS energy estimate to shift the spectrumas H — E

— F nonunitary: implement via LCU of the Fourier transform (for Gaussian, also called
Hubbard-Stratonovich transform)

Gij(@) = [} deGyy (DDt = (ygs|ei(w + T = A) ¢ Jugs)

— Direct computation of frequency-domain Green’s function (G)

Py - _1
- R= (a) + i’ — H) nonunitary: implement via LCU of the Fourier-Laplace transform

2. Dynamics:




LCU unified guantum framework with time-evolution oracle

Ground state

e R gla) ~ [93s)

. _

Integral Transforms

e

Hubbard-Stratonovich Transform
efrzl-ﬁlz/z — /DO dz e—zz/ze—iztI:I

Implement via LCU y

A NZ NZ
- Z o~ KA%/2 —ikAztH _ Z U
V2T N, k=—N,
— PREP(a) @ PREP(a)"

7 SELECT(U)

i1'!I"t|'1'1=||:_"______ —
f}__.-- H“‘*-._Hx N
/ =¥ K-;Ilk 1)1
/ W |
| y I, !-.-I._;"‘-.
Y 1-0(n) O(n)

Fig. 1: Illustration of the projective ground
state preparation algorithm. F = e *7"/2 and
the error on the fidelity of the prepared

ground 1 - |(¢gs|P)| = O(n).




Results and complexity scaling

1 o~

« Projection operator £ =2t

1 : . :
-0 (ilog—) queries to the time evolution oracle
YA  Tym

- 0 (log% + loglog%) ancilla qubits

a is L1 norm of coefficients in LCU

A'is a lower bound on the spectral gap A of the system

y is a lower bound on the overlap of the trial state and true GS
1 is the additive error in the state vector

« Resolvent operator R = (w + il — H) ™

1 2 : . .
-0 (ﬁ logE) queries to the time evolution oracle

1 2 . .
-0 (logr—E + loglogr—e) ancilla qubits
= ['is the artificial broadening
= ¢ isthe allowable error in constructing the resolvent



Isotropic, ferromagnetic Heisenberg model

10°

(a) L=4
10_1 r i 10—1 L
1072 1072

) L
5 =10
8 \ ~ Sy \ - S
? 1073 —— 1%/ et/ 11073} ] /=

L-site chain (OBC)

LCU e—tzﬁz/Q ° e—t2ﬁf/2 ) Where
10~ cosM (H) ©  LCU e "H2 | 0-4f | 1 1
LCU cosM (H H. . — —_(x.X. Y. = —7.7.
Lol o sl | , , Hjjsa 4(X]X]+1 + YY) + 1 (1-2Z;4)
0 20 40 60 0 200 400 600
10° 100

(b)L=6

@) L=10 | Trial State: |1...10...0)
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ty ty

A. N. Chowdhury and R. D. Somma, Quantum Information and Computation
17,41 (2017)
Ge, Tura, and Cirac, J. Math. Phys. 60, 022202 (2019)



Hubbard Model

10° . . . . — 100 . . .
) \ 1o - We want to implement
~ t?
=, —9 - H ; ~
o 10 2 e RN N e 2 |l/’tr1a1> ~ |¢GS>
107 © LCU 2 11073¢ 1
— cos™ (i) Trial State:
1074 ©LOU cosV () 1107 | dy o M), L
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Hubbard Model Dynamics
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ALGEBRAIC PRODUCT
DECOMPOSITIONS

Simulation of a time independent Hamiltonian: H = E hjoj

J
Time evolution operator is: U(t) — o UH _
Single exponential circuit is given as:
PIOIXZYT — o l
— R D—-(20)

TwoO main iIssues:

1) 4™ — 1 many generators ®

2) How to determine angles? /XU 1



Hamiltonian Algebra

e We don’t have to work in full su(2™)



Hamiltonian Algebra

e \We don’t have to work in full su(2™)

® Get the closure of the Pauli strings within
the Hamiltonian under commutation i.e.
the “Hamiltonian algebra” g(H)

su(2™)
H
) g(H) ’

11

' esu(2™)



Hamiltonian Algebra

e We don’t have to work in full su(2™)

e Get the closure of the Pauli strings
within the Hamiltonian under
commutation I.e. the "Hamiltonian
algebra” g(H)

su(2™)




Hamiltonian Algebra

e We don’t have to work in full su(2™) H=> hjo!
e Get the closure of the Pauli strings ’

- : : _ —GtH 16 5
within the Hamiltonian under Uty=e "= T[] e™°
commutation i.e. the “Hamiltonian %’_’f’;ﬁf)l
algebra” g(H)

su(2") |

= 100 /"I’-|,eisenberg
H 2103A
TRMITRXY
) 0 e

Number of spins/qubits (n)



Cartan Decomposition and KHK Theorem

Definition 1 Consider a compact semi-simple Lie subgroup 5u(2”)
G C SU(2"™), which has a corresponding Lie subalgebra g. -
A Cartan decomposition on g is defined as an orthogonal split £

g = € b m satisfying
[k, ¢ C ¢ [m, m| C ¢ [t,m] =m 4)

and is referred as (g, t). Cartan subalgebra of this decompo-
sition is defined as one of the maximal Abelian subalgebras of

m, and denoted as b. N
Theorem 1 Given a Cartan decomposition g = €@m, for any ] B
element H € m there exist a K € et and h € Y such that

—itH —

1 = KhK' (5)




(a) [su@) © H=ZZ+bIX+bXI
(o c{ZZ,1X,XI}
L XI, IX
g(H)={ ZZ,YY yo=d
L ZY YZ
(b) (d)
e—it% — 6—ik e—ith Bik — e—iaZY e—fébYZ

_|e—ithX|_

e?lbYZ

6iaZY

FIG. 2. (a) Schematic relationship of the Hamiltonian algebra g(7{) and its partitioning into a subalgebra £, its compliment m, and the
Cartan subalgebra ). (b) KHK decomposition (Theorem 1) applied to a time-evolution operator generated by an element of m.
(c) Hamiltonian algebra g(7H) for the two-site TFIM and the Cartan decomposition generated by the involution 8(g) = —g’. Here we list
the bases that span g(H) and its Cartan decomposition. (d) Decomposed time evolution for the two-site TFIM.



Determining Parameters

Have H € m, and consider the following function
f(K)=(KvK'H)
where
K = efikigbzkz  oOnyFony,

v = hy + mhso -|-7T2h3 + ... -I—7Tnh_1hnh

Then for any local minimum or maximum of the function
f denoted by Ky will satisty

K{HK, € b

Earp, Henrique N. Sa, & Pachos, Jiannis K. (2005). A constructive algorithm for the Cartan decomposition of SU(2N). Journal
of Mathematical Physics, 46(8), 082108-08210811. doi:101063/12008210



Determining Parameters

Have H € m, and consider the following function

f(K) = (KvK', H)
where
K = efikigbzkz  oOnyFony,

v = hy + mhso -|-7T2h3 + ... -|-7Tnh_1hnh

Then for any[local minimum]or maximum of the function
f denoted by Ky will satisty

K{HK, € b

Earp, Henrique N. Sa, & Pachos, Jiannis K. (2005). A constructive algorithm for the Cartan decomposition of SU(2N). Journal
of Mathematical Physics, 46(8), 082108-08210811. doi:101063/12008210



Algorithm

1) Generate Hamiltonian algebra g(H)

2) Find a Cartan decomposition such
that Hisinm

3) Fit parameters via minimizing f(K)

4) Build the circuit using K and h
5) Then simulate for any time you want! f(K) =

—tH —




Application: Anderson Localization

e We apply our method to the following Hamiltonian for
n = 10, with random magnetic fields to the initial state

) = )

n—1 n

e In the presence of, e.g. a random magnetic field, the
spin excitations are Anderson localized*. We measure

(n?) =Y [¥(t,n)[*|n|?

(*) Bucaj, Valmir. (2016). arXiv: Spectral Theory : 1608.01379

(**) Jovi¢ Savi¢, Dragana & Kivshar, Yuri & Denz, Cornelia & Beli¢, Milivoj. (2011). Phys. Rev. A. 83.10.1103/PhysRevA.83.033813.
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Cartan Conclusions

e \We provide a generic method to build circuits
for time evolution of spin systems.

e O(N?t° = 1) circuit for TFIM, TEXY, XY

® Only local minimum needed for optimization

e Optimize only once —itH

https://github.com/kemperlab/cartan-quantum-synthesizer
10.1103/PhysRevlLett.129.070501 Kokcli, Steckmann, Wang, Freericks, Dumitrescu, Kemper



Fast Forwarding Application: DMFT

Simulation on Quantum Computers

—)

NISQ algorithms: simulate GF of dynamical mean-field theory (DMFT) for the

Hubbard model on noisy intermediate-scale quantum (NISQ) devices

= Intro to DMFT (a map from Hubbard model to Anderson Impurity model via GF)

= Fast-forwarding circuit by Cartan decomposition of dynamical unitary group

Ref: arXiv:2112.05688
10.1103/PhysRevResearch.5.023198

Many-particle Quantum Physics

Algorithms
suitable for

NISQ
devices?

Green’s

functions

6 \V/




3.2 DMFT: a map from Hubbard model to Anderson Impurity model

Electron reservoir . b ath I eve I S

HHub f Z A-I- &jﬂ'—l_c wr) —i_UanTng‘L #anaﬁ HJLI\I— ZE}CDU‘E%J‘I‘CZJCI}G)"‘UnOT”DJ,‘F dez g
iJ),0

i=1,0 i=0,0

Dyson's Egn.
2w) =Impw) = = 6K w),Gpplw)

Z 6K ©) = Gimp (@)
k

N

2-site (1 impurity + 1 bath) Anderson Impurity Model:
. V U
HAIM - E (X()Xl + YOY1 + X2X3 + Y2Y3) + ZZOZZ



3.3 New specific workflow for simulation DMFT/AIM GF

Given U, initialize Exit loop
parameter V' Output Z and V

- = = = = —

---------------------- - -1 DMEFT Loop

1
1 h ]

V (or Z) value
self-consistent?

Hybrid ¥(w) calculation

FIG. 1: Diagram of the DMFT loop specialized for the two-site calculation. Our calculations are initialized with
V =0.5. Each DMFT loop iteration also updates the time evolution Cartan parameters corresponding to the
updated V. The hybrid computation of ¥(w) evaluates the two frequencies wq and ws separately, in a procedure
that is elaborated on in section IV(C).



3.4 Cartan decomposition of the Hamiltonian algebra

(a) (c)

su(2")
to
¢
g(H) = ¢
b
® L — ZoZa, Z1Zs,
N - || || || || | UX1X2}/3) Y[]Xl}/QX:}, m
UL = _feR | e e et | fe ] 0Y1X2Y3, XoY1Y2Xs,
4 4 H H H H F ZoZ 17

\

FIG. 2: (a) A generalized diagram of the Cartan decomposition of the Hamiltonian algebral with dimension = 24
within the special unitary algebra with dimension = 255. Here, £, is the set of basis elements which commute with
Xop, which is not a typical requirement of Cartan decomposition but results in a significant gate cost reduction in
our application. (b) A block circuit diagram of the decomposed time evolution operator. (c¢) Cartan decomposition
applied to the AIM Hamiltonian equation (A2), where the blue, shaded light blue, magenta, and shaded orange
color regions correspond to the sets €, £,, m, and §.



3.5 Manually optimized circuits

(a)
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3.6 Noisy results (IBM device)

(a) U=2
High-rate sampling Low-rate sampling
L rexact (EH (a.1) | | Gexace(t (a.ii)
'} -
L1
Ev'é 0.2
-0.2 1 Gnai!&_\'{t] [} G sy (TL)
T T T T T T
0 25 a0 Th 0 a0 100 150
Time (t) Time (t)
I (a.iii)
= Alias w: 2.83
&
=
=
=
g
Z 1 2 Wnyquist
— 17
% wa: 3.00
- ani.-—:}' ':“JE]]
'} T T T T
0 1 2 3 4

Angular Frequency (w)

FIG. 4: Green’s function sampled on the quantum computer ibmg manila at self-consistency. Initial conditions: (a)
U =2 and Viuitial = 0.964 and (b) U = 8 and Viusia = 0.119. (i/ii) The normalized Green’s function with a phase

correction (top, shifted vertically) and the actual, noisy results (bottom) with high ({y) and low (¢, ) sampling rates
to evaluate the high frequency signal ws and and the low frequency signal w;, respectively. (iii) The discrete Fourier

(b) U=8
High-rate sampling Low-rate sampling
o : (ba)| [ Gevac (b.ii)
0 nﬂvn l\.‘ﬂ'ﬂ . r"lﬁu. nuh'n . M\ |
VAT [ WA
0.2 1
0 Wpwrvincyprephlansitene AGRAAN A
-0.2 1 GT,U-[S_\.{t] [} |_/r-:-_“i,.;.1.- (tr.)
0 llﬂ ‘ZID 3Il:|' 0 ll}lﬂﬂ ZDI[]EI' EDIDEI'
Time (t) Time (t)
1+ i | Alias w: 0.04 (b‘iii]
I wy: 0.01

0.05 0.1

1] 2 4
Anpular Frequency (w)

6 8

transform showing the ideal frequencies (solid, orange) and the evaluated peaks (dashed) for both frequencies.
Spurious peaks at w = 0 have been removed. (a) Returns a value of V,., = 0.944 and (b) returns a value of
Vaew = 0.116, both within the tolerance of 0.02.



3.7 Correct physical results

DMFT Convergence on Noisy Quantum Hardware
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The first computation of metal-insulator phase diagram using noisy digital quantum hardware.
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Quantum Arithmetic with Symmetry

* Intuition:

e Euler identity e? = cos(A4) + isin(A4) is a decomposition into even (cos) and
odd (sin) functions (or symmetric and anti-symmetric forms)

* cos(—x) = cos(x); sin(—x) = —sin(x)
* 1+1 eigenvalues of spatial inversion operation x & -x
e~ LHt 4 piHt
* cos(Ht) =
iHt _ ,—iHt
e sin(Ht) == 2ie

* A basis for engineering (spectral) quantum filter functions

* Application 1: A < B Inversion Symmetrized Trotter formula
* Application 2: Derivation of Ancilla as a measurement pointer state



Linear Combination of Trotter Unitaries: Sum and Product

H=A+B
. U = o~ 3 (A+B)

_itA _itB

" Uyp(t) =e 2 e 2
» U- Uy = 0(t*[4,B])

_itB _itA

" Ups(t) =e 2 e 2
= U-Ugy =0(t? [A B])

Uap +Upa
n U+ —

- U- U, =20(t3 ([4,[A,B] + B & A))



2403.05470 Only Quantum Circuit You’ll Ever Need

0), —H}—o—9—{H}+ A~

Ut |¥)

) Ur—V | 0= 9)]

FIG. 1. Selecting U = V1 = ¢ " we define a random spectral walk (Sec. ). Using U = e**e’® and V = e'Pef?, the
quantum circuit acts by the BCH-like series that is symmetric with respect to the inversion A <+ B. This is used to ffxctorlze
time-evolution (Sec. ). Setting different times ({ — #;,05) enables a symmetric variational ansatze (Sec. ). Last,
setting U = X; and V = 1Y) for an array of qubits {q;}fil and concatenating the gadget N-times performs the measurement
of Mermin polynomial My with a linear depth circuit (Sec. ). The symmetry of the operator applied to |V) is contingent,
on a measurement observing the ancillary qubit in the (|1)) |0) state. Note that U4 are not unitary and that the principle
system’s final state Uy |¥) is normalized upon measurement of the ancilla qubit, due to the measurement postulate.

*Trotter (product) decompositions are recovered when
U=V. The ancilla is not required, decouples and will
always be measured in the 0 state. It may thus be
removed.



The Only Quantum Circuit You’ll Ever Need

X-(I1FZ)=X+i¥Y=I+2) X

: U+V —
| | l> = — — U_|_
‘l>ﬂ | H N ¢ H | /’74 _ UEV o
| |
Ut |¥) 127
V) —— | - —
‘ > L_X____]:[___Z______I U+ W) 2
time : Note the state-dependent
weighting factors
1U; )|
_I_ —
oo U 1D 1D
0}ol [ _1)—H I H— A\ & AN Trace over, discard ancilla
SN T B



Mike & lke, Chapter pp362 LCU of %i%
P o 5(p) p I E(p)
0
A
0) = R 00— H [ H 1
_ A
Figure 8.5. Controlled-NOT gate as an elementary model of single qubit measurement.
= I Z I Z
U= |0p0E><0poE|+|0p1}3><0p1E’+’1p1E><1poE|+’1POE><1p1E’. (8.24) /- 8('0) = (505>p(50-§)
Thus o=t
Ey = (0g|U|0g) = [0£)(0p| (8.25) _< 0
E = (1p|U0g) = [1p)(1p], (8.26) 1+Z
1= (1e|U0g) = [1p)(1p] K™ — 10%0]
and therefore E

1 1-7
E(p) = EopEy + ErpEy (8.27) \_ W\ = | 1) (1|



summary

* Algorithmic perspective and classification of dynamic simulations.

* Unification of state-preparation and dynamics algorithms with ancilla-
mediated quantum integral transformations (2112.05731):

* Projection — Hubbard-Stratonovic
* Propagation — Fourier-Laplace

* Algebra-based product encoding algorithm is used to recover a metal-
insulator phase-transition (physrevLett.129.070501 , PhysRevResearch.5.023198).

* Considered all ancilla outcomes and the quantum channels they construct
on the principal system (2403.05470).

* Generalization of time-evolution operator decomposition in terms of addition
composed with multiplication.

* Defining projective measurements gives operational definition for ancilla
measurement pointer states



< “I| gave the world quantum advantage 113 years ago....
And all | got was a lousy phenomenological theory of superconductivity”

Quantum Supremacy S il

¢} Landau theory of symmetry breaking and phase transitions
& 3 @ (BCS) Superconductivity, Josephson junction, high-T,, high-P
DB Transistor, STM, MFM, ..., Transmon

Phonons, polaritons, polarons, solitons, vortices, magnons, anyons,...
Onsager

ressure

Thermo-electrics, spin-tronics, valley-tronics, quantum information
@) ) QHE (topology, R = %) — K.\V.K., Laughlin, Haldane
@) Graphene and Moire
WKB, BTK, BKT, ..., LTS,LCU,QSP, ETC
Looking Forward:

It’s a long & challenging road to universal quantum computing.
Luckily, 3 many big discoveries along the way.

2024++
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