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Abstract— The development of quantum computing technolo-
gies builds on the unique features of quantum physics while
borrowing familiar principles from the design of conventional
devices. We introduce the fundamental concepts required for
designing and operating quantum computing devices by review-
ing state of the art efforts to fabricate and demonstrate quantum
gates and qubits. We summarize the near-term challenges for
devices based on semiconducting, superconducting, and trapped
ion technologies with an emphasis on design tools as well as
methods of verification and validation. We then discuss the
generation and synthesis of quantum circuits for higher-order
logic that can be carried out using quantum computing devices.

Index Terms— quantum computing, quantum information,
quantum devices, quantum arithmetic, quantum circuits

I. INTRODUCTION

Quantum computing promises new capabilities for process-

ing information and performing computationally hard tasks.

This includes significant algorithmic advances for solving hard

problems in computing [1], sensing [2], and communication

[3]. The breakthrough examples of Shor’s algorithm for factor-

ing numbers and Grover’s algorithms for unstructured search

have fueled a series of more recent advances in computational

chemistry, nuclear physics, and optimization research among

many others. However, realizing the algorithmic advantages

of quantum computing requires hardware devices capable of

encoding quantum information, performing quantum logic,

and carrying out sequences of complex calculations based on

quantum mechanics [4]. For more than 35 years, there has

been a broad array of experimental efforts to build quantum

computing devices to demonstrate these new ideas. Multiple

state-of-the-art engineering efforts have now fabricated func-

tioning quantum processing units (QPUs) capable of carrying

out small-scale demonstrations of quantum computing. The

QPUs developed by commercial vendors such as IBM, Google,

D-Wave, Rigetti, and IonQ are among a growing list of devices

that have demonstrated the fundamental elements required for

quantum computing [5]. This progress in prototype QPUs has

opened up new discussions about how to best utilize these

nascent devices [6]–[8].
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Quantum computing poses several new challenges to the

concepts of design and testing that are unfamiliar to con-

ventional CMOS-based computing devices. For example, a

striking fundamental challenge is the inability to interro-

gate the instantaneous quantum state of these new devices.

Such interrogations may be impractically complex within the

context of conventional computing, but they are physically

impossible within the context of quantum computing due to the

no-cloning principles. This physical distinction fundamentally

changes how QPUs are designed and their operation tested

relative to past practice. This tutorial provides an overview

of the principles of operation behind quantum computing

devices as well as a summary of the state of the art in

QPU development. The continuing development of quantum

computing will require expertise from the conventional design

and testing community to ensure the integration of these

non-traditional devices into existing design workflows and

testing infrastructure. There is a wide variety of technologies

under consideration for device development, and this tutorial

focuses on the current workflows surrounding quantum devices

fabricated in semiconducting, superconducting, and trapped

ion technologies. We also discuss the design of logical circuits

that quantum devices must execute to perform computational

work.

While the tutorial captures many of the introductory topics

needed to understand the design and testing of quantum

devices, several more advanced topics have been omitted

due to space constraints. Foremost is the broader theory of

quantum computation, which has developed rapidly from early

models of quantum Turing machines to a number of different

but equally powerful computational models. In addition, we

have largely omitted the sophisticated techniques employed to

mitigate the occurrence of errors in quantum devices. Quantum

error correction is an important aspect of long-term and large-

scale quantum computing, which uses redundancy to overcome

the loss in information from noisy environments. Finally, our

review of quantum computing technologies is intentionally

narrowed to three of the leading candidates capable of near-

term experimental demonstrations. However, there is a great

diversity of experimental quantum physical systems that can

be used for encoding and processing quantum information.

The tutorial is organized as follows: Sec. II provides an

introduction to the principles of quantum information and

quantum computing; Sec. III provides an overview of sev-

eral quantum computing devices and their use in developing

quantum processing units; Sec. IV discusses concerns for the

verification and validation of these devices; Sec. V provides

a similar presentation for the specification and synthesis of

quantum arithmetic circuits ; and Sec. VI offers a summary

of future developments.
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Fig. 1. The Bloch sphere with a unit radius provides a geometrical
representation of a qubit. The north and south poles of the sphere define the
orthonormal basis states |0〉 and |1〉, respectively, while the surface defines
the set of all possible qubit values. In spherical coordinates, the example qubit
|�〉 has expansion coefficients c0 = cos θ and c1 = eiφ sin θ .

II. PRINCIPLES OF QUANTUM COMPUTING

The principles of quantum computing derive from quan-

tum mechanics, a theoretical framework that has accurately

modeled the microscopic world for more than 100 years.

Quantum computing draws its breakthroughs in computational

capabilities from the many unconventional features inherent to

quantum mechanics, and we provide a brief overview of these

features while others offer more exhaustive explanations [4].

In quantum mechanics, all knowable information about

a physical system is represented by a quantum state. A

prominent example of a quantum state within the context

of quantum computing is the case of a qubit. A qubit, or

quantum bit, refers to the quantum state of an isolated two-

level quantum mechanical system. Informally, the qubit is the

quantum analog of bit and it serves as the fundamental unit of

information within quantum computing. Methods for storing a

qubit of information require the control of a physical two-level

system, and we denote those physical systems as quantum

register elements that have the ability to store a single qubit

of information. We will discuss some of the different physical

systems as quantum register elements in Sec. III. Logically,

the qubit is defined over a basis of binary states labeled as

‘0’ and ‘1’, respectively, such that an arbitrary state of a qubit

may be expressed as the linear combination

|ψ〉 = c0|0〉 + c1|1〉 (1)

The superposition of these orthogonal basis states is funda-

mental to quantum mechanics. The expansion coefficients are

complex-valued numbers normalized as |c0|2 + |c1|2 = 1 and

a convenient graphical representation of the qubit is given

in spherical coordinates. As shown in Fig. 1, the surface

of a unit sphere represents all possible qubit values, where

the points of |0〉 and |1〉 are located at the north and south

poles, respectively. While the absolute phase of a quantum

state is arbitrary [9], |�〉 is normalized to unity and must

lie on the surface of the sphere. In Fig. 1, the amplitudes

c0 and c1 represent the projection of the quantum state onto

the corresponding basis states and the example qubit |�〉 has

expansion coefficients c0 = cos θ and c1 = eiφ sin θ . This

representation of the qubit state on a unit sphere is commonly

called the Bloch sphere in quantum mechanics.

More formally, a quantum state is defined as vector within

a Hilbert space, which is a complex-valued vector space

supporting an inner product. By convention, the quantum state

with label � is expressed using the ‘ket’ notation as |�〉,
while the dual vector is expressed as the ‘bra’ 〈�|. The inner

product between these two vectors is 〈�|�〉 and normalized

to one. An orthonormal basis for an N-dimensional Hilbert

space satisfies 〈i | j〉 = δi, j , and an arbitrary quantum state

may be represented within a complete basis as

|�〉 =
N−1∑

j=0

c j | j〉, (2)

where c j = 〈 j |�〉 is the corresponding coefficient. Within

a chosen basis, the coefficients of the quantum state are

interpreted as probability amplitudes such that the squared

magnitude of this amplitude yields the probability to lie along

the chosen basis, i.e., p j = |c j |2. The mathematical theory

of quantum mechanics is exceedingly rich and draws from

aspects of linear algebra, probability, and complex analysis.

Additional details on these aspects points are found, e.g., in

Ref. [9].

The fundamental equation of motion for the quantum state

is the Schrodinger equation, a partial differential equation

defined as

i h̄
∂|�(t)〉

∂ t
= Ĥ(t)|�(t)〉 (3)

where the time-dependent operator Ĥ (t) defines the energetic

interactions governing the physical system, and is referred to

as the Hamiltonian. Consequently, the Hamiltonian is impor-

tant for manipulating the quantum state and its control plays a

prominent role in the design and testing of quantum computing

technologies. It is important to note that a quantum state can

not be directly observed by physical measurement. Rather

measurements of a quantum state must be performed relative

to a basis set, e.g., {| j〉}. The probability to observe the i -th

outcome corresponds to the probability pi defined above, such

that a series of repeated measurements over an ensemble of

identically prepared quantum states will generate a distribution

of outcomes that approximates the set of probabilities {p j }.
Thus, the accurate characterization of this distribution can

be exceedingly difficult due to the large number of basis

states and the infrequent occurrence of measurement outcomes

corresponding to low probabilities. A survey of methods for

measuring quantum state is provided in Ref. [10]

A multi-qubit register is an addressable array of n two-

level physical systems. The principle of superposition may be

extended to the register as the quantum state for the composite

physical system is also given by Eq. (2). For an n-qubit

register, the computational basis is expressed in binary notation

as

| j〉 = | j1 j2 . . . jn〉 = | j1〉 ⊗ | j2〉 . . . ⊗ | jn〉, (4)
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where the binary values jk correspond to the binary expansion

of j . The dimensionality of the underlying Hilbert space is

N = 2n and any normalized vector represents a valid quantum

state. In particular, there are composite quantum states which

cannot be expressed as separable products of n single-qubit

states. Such states are known as entangled states and they

are a hallmark of quantum mechanics and, therefore, quantum

computing. For example, consider the quantum state of a 2-

qubit register

|�〉 =
1

√
2

(|0102〉 + |1112〉) . (5)

Measuring the individual elements of the register will generate

binary outcomes 0 or 1 with equal probability. Accordingly,

the classical expectation for a joint measurement of the register

is a uniform distribution of four possible outcomes. However,

measurements of this quantum state are always correlated

such that both results are either (0,0) or (1,1), where the

probability for each of these outcomes is 1/2. Notably, there

is no possibility for observing anti-correlated outcomes for

this quantum state, e.g., (0, 1). The presence of these correla-

tions in the measurement statistics is known as entanglement

and the underlying quantum state is said to be entangled.

Fundamentally, entanglement is a limitation on the ability to

describe states of a register solely by specifying the value

of each register element, and entangled states are notable for

the ability to violate the local, causal relations predicted by

classical mechanics [11].

The no-cloning principle represents a fundamental con-

straint placed on quantum information processing. The no-

cloning principle is a consequence of the linearity of quantum

mechanics [12], in which the ability to perfectly clone, aka

copy, an arbitrary quantum state is not permitted. In particular,

given a quantum register storing an arbitrary state |�1〉, this

information cannot be copied into a second register without

loss of information. Efforts to optimally approximate the value

of the first register, known as quantum cloning [13], can be

evaluated by measuring the fidelity defined

f = | 〈�2|�1〉 |2, (6)

where |�2〉 is the value of the second register and f ∈ [0, 1].
The principles of operation for a quantum computer are

based on the Schrodinger’s equation in Eq. (3), in which the

time-dependent Hamiltonian Ĥ (t) can be directly controlled

through the use of externally applied fields. Depending on

the specific technology in place, these controls will consist

of electrical, magnetic, or optical fields designed to drive the

dynamics toward a specific response. In Sec. III, we present

examples for devices based on semiconductors, superconduc-

tors, and trapped ion technologies. In some computational

models, the time-dependent controls are realized as pulsed

fields that act discretely on the quantum register elements.

These discrete periods of field interaction are known as gates

and the effect of the gate on the quantum register is described

by a unitary operator that transforms the stored quantum

state. This is known as the gate or circuit model since a

diagrammatic sequence of gates acting on registers provides a

design for instruction execution.

An alternative computational model applies the time-

dependent field as continuous interaction subject to constraints

on the rate of change for the overall Hamiltonian. This con-

straint imposes an adiabatic condition on the dynamics of the

quantum system [14], such that the Hamiltonian slowly mod-

ifies the interactions between quantum physical subsystems,

i.e., register elements, relative to the internal energy scales

describing those subsystems. As a result, the register state can

be driven toward a desired outcome. This is known as the

adiabatic model given the constraints on the controls. A device

design based on the adiabatic model has been implemented

in superconducting technology by the commercial vendor D-

Wave Systems, Inc. In the realization of that design, the

Hamiltonian control is restricted to a specific functional form,

namely the transverse Ising model, which limits the device

operation to computing discrete optimization problems. In

addition, the physics of the device are not well modeled by

the Schrodinger equation, cf. Eq. (3), but rather require a more

sophisticated model that includes non-trivial interactions with

the surrounding quantum physical systems as well as finite

temperature effects [15]. Nonetheless, the device has been

observed to correctly compute the solution to a wide variety of

discrete optimization problems and has been characterized as

having some advantages relative to conventional computing

devices. While the remainder of this tutorial will focus on

the gate model for quantum computing, we refer the reader

interested in adiabatic quantum computing to the recent review

by Albash and Lidar [16].

We now summarize the basic criteria that define the

expected functionality of quantum computing devices. As

first presented by DiVincenzo [17], these criteria represent

the minimal behaviors needed to perform general-purpose

quantum computing in the presence of likely architectural

constraints. First is the ability to address the elements in

a scalable register of quantum systems. Scalability implies

a manufacturing capability to fabricate and layout as many

register elements as needed for a specific computation. Second,

these register elements must be capable of being initialized

with high fidelity, as the starting quantum state of the compu-

tation must be well-known to ensure accurate results. The third

criterion is the ability to measure register elements in a well-

specified basis. As discussed above, measurement samples the

statistical distribution encoded by the quantum state according

the probabilities pi over a given basis set. A measurement

sample represents readout from the register of the quantum

computer and this value may be subsequently processed.

Fourth, the control over the register must include the ability

to apply sequences of gates drawn from a universal set. Uni-

versality of the gate set characterizes the potential to perform

an arbitrary unitary operation on the quantum state using a

sufficiently long series of gates from that set. In particular, it

is known that a finite set of gates is sufficient to approximate

universality and, moreover, that a finite set of addressable one-

and two-qubit gates are sufficient for universality [18]. The

latter result, known as the Solovay-Kitaev theorem, provides

a constructive method for composing arbitrary gates from a

finite, universal gate set. Selection of a universal gate set raises

the question of the optimal instruction set architecture for an
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intended application within a specific device technology [19].

The fifth criterion is that the gate operation times must be

much shorter than the characteristic interaction times on which

the register couples to other unintended quantum physical

systems. These interactions induce decoherence of the stored

quantum superposition states, which leads to the loss of

information [20], [21]. In order to maintain the stored quantum

state with sufficient accuracy, the duration of the gate sequence

must be shorter than the characteristic decoherence time. Fault-

tolerant protocols for gate operations are designed to counter

the losses from decoherence and other errors by redundantly

encoding information with quantum error correction codes

[22].

Two additional functional criteria are necessary for a quan-

tum computer with geometrical constraints on the layout of the

quantum register. In particular, layout constraints may impose

restrictions on which register elements can be addressed

by multi-qubit gates, e.g., nearest neighbors within a two-

dimensional rectangular lattice design. Physical layout restric-

tions may be overcome by moving stored quantum states

between register elements. This is accomplished using the

SWAP gate, a unitary operation that exchanges the quantum

state between two register elements. In addition, a MOVE

operation can support long distance transport of a stored

value, in which the register element itself is displaced. The

latter proves useful for distributed quantum registers that may

requires interconnects, aka communication buses, to SWAP

register values. The necessity of these functions depends on

the purpose of the quantum computer and especially the

limitations of the technology. Presently, all technologies for

quantum computing face some constraints on register layout.

III. DEVICES FOR QUANTUM COMPUTING

There are many different possible technologies available for

building quantum computers, and these are typically classified

by how qubits of information are stored [23]. As discussed in

Sec. II, these devices must meet several functional criteria to

carry out reliable quantum computation. In this section, we

provide an overview of three technologies that are currently

used for developing quantum computing devices and we

discuss the progress toward meeting the functional criteria.

A. Silicon Spin Qubits

Silicon spin qubits denote a technology implementation

by which quantum information is encoded either in the spin

states of an electron found in a silicon quantum dot, or in

the spin state of the electron or nucleus of a single-dopant

atom (typically group V donors) in a silicon substrate. In

particular, the orientation of the spin in these systems is used to

encode the |0〉 and |1〉 states. Notably, these silicon devices are

fabricated with conventional CMOS techniques, and consist of

gate electrodes (normally Aluminum or Polysilicon) that can

control the energy landscape in the silicon substrate. These

electrodes are appropriately designed and biased such that a

single electron is confined in a quantum dot at the interface.

Examples of a silicon quantum dot include the MOS device

shown in Fig. 2(a) or the Si/SiGe device shown in Fig. 2(b).

Similar electrostatic control is used for silicon donor devices

like the example shown in Fig. 2(c) of a Phosphorus donor

implanted inside a silicon substrate. In all of these examples,

the electrons are strongly confined such that lowest electronic

orbital energy in the quantum dot or the donor is well isolated

from other excited electronic states. The confinement length

for the donor electron is ∼ 1.5 nm in all 3-dimensions, while

for the dot electron, these dimensions are ∼ 10 nm and

∼ 2 nm in the lateral and vertical directions, respectively.

These characteristic dimensions make silicon qubits the most

compact technology as compared to the qubit technologies

discussed in later subsections.

Addressing silicon spin qubits uses an applied static mag-

netic field B0 to split the orbital degeneracy of the dot-electron

at the interface. Due to the Zeeman effect, the orbital for the

confined electron is split into the distinct spin states |↑〉 and

|↓〉. These spin states encode the computational states |0〉 and

|1〉, where the energy splitting is given by the Zeeman energy

γe B0 with γe ∼ 28 GHz/T the gyromagnetic ratio of the

electron. For 31P donors, the electron and nuclear spins are

coupled by the hyperfine interaction A ∼ 117 MHz [29]. The

donor qubits are generally operated under large magnetic fields

B0 > 1 T, such that (γe + γn) B0 ≫ A, where γn ∼ 17 MHz/T

is the gyromagnetic ratio of the nucleus. In this limit, the eigen

spin states are tensor products of the electronic spin (|↑〉, |↓〉)
and the nuclear spin (|⇑〉, |⇓〉) states. The resulting energies

are shown in Fig. 2(d), where the electron spin qubit splitting

depends on the nuclear spin states, and vice versa. Typical

energy splittings are of the order of tens of GHz and MHz

for the electron and nuclear spins, respectively [30], [31]. The

hyperfine interaction A and the electron gyromagnetic ratio γe

depend on the orbital wavefunction of the electron, which can

be tuned with electric fields [32], [33]. As a result, the qubit

splittings are electrically tunable after the silicon qubit devices

are fabricated.

Electron spin qubits are commonly initialized and measured

using spin-charge conversion techniques [34]. Charge sensors

such as quantum point contacts and single-electron-transistors

(SET) are located adjacent to the quantum dot (or donor) and

are then capacitively coupled to them, cf. Fig. 2. The charge

sensors are biased appropriately with gate voltages, such that

the current passing through them is strongly sensitive to the

electrostatic environment in their vicinity. The orbital energy

of the electron is then electrically tuned such that the electron

can preferentially tunnel to the same or another nearby charge

reservoir, depending on its spin. The presence or absence of

the electron on the donor/dot can then be detected via a change

in current passing through the charge sensors, which aids to

readout the electron spin state. The protocol will also initialize

the electron spin state in the dot or the donor to |↓〉 [34].

For spin control, an oscillating (driving) magnetic field is

applied to the qubits. The frequency of the oscillating field is

chosen to be equivalent to the energy difference between the

two spin qubit levels. Based on the principles of magnetic res-

onance, transitions between the spin states are then achieved

at a rate proportional to the amplitude of the driving field [35].

The driving field is pulsed appropriately to obtain a specific

rotation of the spin state, for implementing a single qubit gate.
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Fig. 2. (a) Bottom panel: Scanning electron microscope (SEM) image of a metal-oxide-semiconductor (MOS) quantum dot device similar to the one where
single and two-qubit gates were demonstrated. Top panel: Cross-sectional schematic of the device illustrating the location of qubits at the Si/SiO2 interface.
https://www.nature.com/articles/nature15263This Figure is reprinted from Ref. [24] with permission from Nature. (b) Bottom panel: SEM image of a Si/SiGe
double quantum dot device, where two-qubit operations were implemented. Middle panel : Variation of the static magnetic field along the axis of quantum dots.
Top panel : Cross sectional device schematic highlighting the position of the quantum dots. http://science.sciencemag.org/content/359/6374/439This Figure is

reprinted from Ref. [25] with permission from the American Association for the Advancement of Science (AAAS). (c) SEM image of an ion-implanted 31P

device similar to the one used for demonstrating record spin-coherence times [26], [27]. (d) 31P donor electron (|↑〉, |↓〉) and nuclear (|⇑〉, |⇓〉) spins states
with the relevant energy separation between them [28].

A microwave transmission line antenna (see Fig. 2a and Fig.

2c) is normally used to generate the driving field [36], yielding

magnetic field amplitudes of ∼ 0.1 mT, and single qubit

gate times of few micro-seconds [30] (or milliseconds [31])

for the electron (or nucleus). Alternatively, a micromagnet

producing a dc magnetic field gradient (Fig. 2b) can also

be embedded on chip [37]. In the presence of an additional

oscillating electric field (from gate voltages), the electron

feels an effective oscillating magnetic field, resulting in spin-

resonance with faster gate times. Note that the frequency of the

control field is different for both the electron (ESR frequencies

∼ tens of GHz) and the nucleus (NMR frequencies ∼ tens of

MHz). The ability to control and readout the electron spin

state also allows measurement of the nuclear spin state. As

the electron spin resonance frequency is determined by the

nuclear spin state (see Fig. 2d), probing frequencies at which

the electron can be controlled, allows readout of the nuclear

spin [31].

Since the splittings are dependent on A and γe, they can be

tuned electrically and it is possible to independently control

each donor located within a precisely positioned array [38].

In their idle state, the qubits are electrically detuned from

the control field by appropriately tuning A and γe. When

operations need to be performed on the qubits, they are brought

in resonance with the control field, i.e. the energy splitting is

tuned to the frequency of the control field.

The coupling between two electron spin qubits occurs via

the intrinsic exchange interaction between them [38]. The

exchange coupling Je is primarily determined by the overlap

between the two-electron wave function. Je can hence be

tuned by either modifying the tunnel barrier between the two

electrons, or by shifting the relative orbital energies of the

two electrons [39]. Both these methods can be realized by

appropriately tuning the gate voltages that control the potential

landscape in the device. To perform a CNOT gate, the electron

spin qubits are operated in a regime where Je is smaller

than the energy difference between the qubit splittings of

the two electrons (often termed as the detuning). In such

a regime, each electron spin qubit will have two resonance

frequencies, which are determined by the state of the other

qubit. Hence, an oscillating control field at one resonant

frequency will conditionally rotate the qubit dependent on the

state of the other qubit, resulting in a CNOT gate [24], [25]. To

perform SWAP, the qubits are initialized in a regime, where

the exchange coupling is much smaller than their detuning.

The exchange coupling is then increased to a value much

larger than their detuning, such that the two qubits exchange

information with each other. After an appropriate time that

determines the angle of SWAP, the exchange coupling is

brought back to a low value.

The spin-orbit coupling is weak for electrons in silicon,

resulting in long spin-relaxation times T1. The relaxation time

has been shown to be dependent on the temperature and mag-

netic field [40]. Operating the qubits at low temperatures (< 1

K) and magnetic fields (< 5 T), yield T1 exceeding several

seconds and even hours. The presence of spin containing

nuclei (such as Si-29) in the lattice, and their fluctuations,

can result in decoherence of the electron spins [41]. Hence,
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isotopic purification of silicon from spin containing nuclei,

allows for long-coherence times (T2) of milli-seconds and

seconds for the electron and nuclear spins respectively [27].

Additional sources of decoherence include charge or electric

field noise arising from nearby defects/traps, control signals,

gate electrodes and thermal radiation from the microwave

antenna [27].

While the methods to address and couple silicon qubits can

be integrated with the microelectronics industry, the qubits

are very sensitive to atomic details that have not yet been

addressed in the industry. These details strongly affect the

qubit operation, and hence it is essential to design devices that

minimizes their influence on the qubits. First, the exchange

coupling between donor electrons is extremely sensitive to

the position of donors, necessitating precise donor placement

accuracies and/or large exchange coupling tunabilities [42],

[43]. Efforts are underway to demonstrate qubits with single-

donor atoms in silicon that are placed precisely with Scanning

Tunneling Microscopy [44], as well as to explore alternate

means of coupling between the qubits (such as dipolar inter-

actions [45], [46]) that are less sensitive to donor placement

inaccuracies. In addition, atomic roughness and step edges at

the interface, can result in the excited orbital states coming

close to the ground orbital state in silicon quantum dots,

accelerating relaxation and even resulting in a non spin-1/2

ground states [40]. The energy separation between the ground

and excited orbital states (also referred to as valley splitting)

can be tuned with electric field to an extent [47], yet it is

always desirable to obtain larger and uniform valley splittings

with a smooth interface. Finally, uncontrolled strain in the

lattice arises from the thermal mismatch between the gate

and substrate materials when the device is cooled from room

temperature to milli-Kelvin temperatures [48]. This modifies

the potential landscape in the device, altering the position

and confinement of the quantum dots, along with introducing

accidental dots. Ref. [48] highlights that using gate materials

(such as polysilicon rather than aluminum) which have similar

thermal expansion coefficients to that of silicon, can aid to

reduce the lattice strain.

The exchange interaction between the qubits is short-range

(within few tens of nm), and can only result in nearest-

neighbor couplings. To scale up silicon qubit devices to a

large-scale architecture, it is beneficial to have connectivity

between qubits that are separated by much larger distances.

Methods to couple silicon qubits to a photonic mode spanning

∼ centimeter in a microwave resonator have been proposed

previously [45], [49], and recently demonstrated in Si/SiGe

quantum dots [50], [51]. Through the photonic mode, two

qubits separated by as far as a centimeter can be virtually

coupled to each other, enhancing the qubit-connectivity sig-

nificantly. Coupling the spins to the resonator also provides

a pathway to readout the spin states [45]. The transmission

frequency of the resonator then depends on the spin state of

the qubit. Hence, applying a microwave signal to the resonator,

and measuring its transmission aids to detect the spin state.

Designing silicon spin qubit devices requires modeling

several classical and quantum mechanical parameters with a

range of techniques that are adapted from the semiconductor

industry [28]. Classical variables that are relevant and need

to be solved for include the electrostatic potential landscape,

electric fields, electron densities, capacitances, magnetic fields

and strain. The electrostatic parameters in silicon devices can

be obtained by solving Poisson’s equation with the finite-

element method with traditional TCAD design packages such

as Sentaurus TCAD, or a general multiphysics package like

COMSOL. Solving Maxwell’s equations with high-frequency

electromagnetic solvers (such as CST-Microwave Studio or

ANSYS-HFSS) aids to estimate the driving magnetic fields

generated by the microwave antenna in such devices. Thermal

strain while cooling such devices can also be simulated by

solving the stress-strain equations with COMSOL [48]. In

addition to the classical parameters, it is also essential to solve

the electronic structure in silicon qubit devices, and estimate

the electron orbital-energies, and wave functions. Effective

mass theory and tight-binding techniques have been exten-

sively used for such calculations [40]. The orbital energies

and wave functions act as a handle to the hyperfine, exchange

and tunnel couplings, along with the electron gyromagnetic

ratio and electron spin relaxation times. These parameters

are ultimately fed into a simplified spin Hamiltonian, which

is solved with mathematical packages (such as MATLAB,

Mathematica or QuTiP), to simulate the instantaneous spin

states and quantum gate fidelities.

B. Trapped Ion Qubits

Trapped ion qubits represent an implementation where

quantum information is encoded in the electronic energy levels

of ions suspended in vacuum. To obtain trapped ions, metals

such as Calcium (Ca) or Ytterbium (Yb) are first resistively

heated and vaporized with a current passing through them,

and then directed to the trap. While loading these ions into

the trap, these vaporized neutral atoms are simultaneously

photo-ionized, where their outermost electron is removed,

resulting in ions that have a single valence electron. As the

ions are charged particles, appropriate voltages applied to gate

electrodes in their vicinity and resulting electric fields, can

then confine the ions in the trap. The most common gate-

electrode configuration for ion trapping is the (rf) Paul trap

(Fig. 3a), which consists of 4 electrodes (2 with oscillating

voltages and 2 grounded) that induce an effective harmonic

potential in the x-y plane, and additional two DC gate elec-

trodes to induce harmonic confinement in the z-plane [55]. In

the harmonic oscillator potential, there are several eigen states

corresponding to the vibrational modes of the trapped ions.

To ensure that thermal effects and fluctuating electromagnetic

fields do not cause random excitation of these states and

thereby motion of the ions, the ions are laser-cooled to their

vibrational ground state [56]. For a small number of ions

(∼ 50), the ions will then be arranged in a linear chain along

the z-direction, such that overall forces from the external fields

cancel out the forces from their Coulomb interaction. Typical

ion separation in the trap is ∼ 10 µm.

As mentioned previously, a qubit is defined using the energy

levels of individual ions in the trap to encode the basis states

|0〉 and |1〉. Depending on the orbital energy levels used for
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Fig. 3. (a) Schematic of a Paul trap used to confine ions in vacuum. Inset : Visualization of ions in the trap with fluorescent techniques.
https://www.nature.com/articles/nature07125This Figure is reprinted from Ref. [52] with permission from Nature. (b) Electronic energy levels of a
171Yb+ ion illustrating qubit encoding (|0〉 and |1〉) with hyperfine energy levels [53]. Transition between qubit states is achieved by a Raman process

via excitation to a virtual state |e〉. (c) Electronic energy levels of a 40Ca+ ion illustrating qubit encoding with the s- and d-orbital energy levels.
https://link.springer.com/article/10.1007%2Fs11128-004-3105-1This Figure is reprinted from Ref. [54] with permission from Springer.

encoding, there are two popular implementations of trapped

ion qubits : hyperfine and optical qubits. For hyperfine qubits,

the states correspond to the hyperfine levels in the atomic s-

orbital. For example, as shown in Fig. 3(b), the ion 171Yb+

has a nuclear spin of 1/2, and the qubit is encoded using the

singlet |S〉 and |T0〉 configurations of the electron and nuclear

spins [57]. A small DC magnetic field is applied to separate

the |T0〉 state from other triplet states |T−〉 and |T+〉. The

qubit splitting of 12.6 GHz for 171Yb+ is determined by the

hyperfine interaction between the electron and the nucleus,

and insensitive to magnetic field fluctuations up to first order

[58]. Alternatively, for the optical qubit encoding with trapped

ions, the basis corresponds to s-orbital and d-orbital electronic

energy levels. As shown for 40Ca+ in Fig. 3(c) [54], the

energy splitting is then ≈ 411 THz and equivalent to 729

nm. Trapped ion qubits are highly reproducible [59] provided

there are no magnetic and electric field inhomogeneities in the

trap, which may modify the energy levels through Stark and

Zeeman effects respectively.

Fluorescent techniques are used to visualize the ions, where

the qubit states are continuously excited to the p-states with

the help of a laser, to induce an electric-dipole transition [56].

On such a transition, the ions scatters the photons which are

detected by photo-multiplers or a CCD camera (see Fig. 3a).

The required laser frequency is equivalent to the separation

between the energy states used for the transition, and depends

on the choice of the ion.

The hyperfine and optical qubits are initialized with optical

pumping. Here, a laser is incident on the ions with an appro-

priate frequency that can continuously drive the |1〉 state to

the excited p-states. Any spontaneous decay from the excited

p-state to ground states apart from |0〉, are also further driven

by the laser [60]. Over a period of time (∼ µs), all the

spontaneous emissions result in the qubit state being initialized

to |0〉 [61].

For readout of trapped ion qubits, the laser is tuned to a

frequency that continuously drives one of the basis states (e.g.

|1〉) to an excited p-state. The polarization of the laser and

excited state is chosen such that spontaneous emission cannot

occur to the other basis state |0〉, based on spin-selection rules

[60]. Hence, if the initial qubit state is |1〉, the resulting p-state

after excitation may spontaneously decay to states apart from

|0〉, which are also continuously excited. Photons from the

spontaneous emission are then detected with a CCD camera.

If the initial qubit state is |0〉, the qubit cannot be excited to

the p-states by the laser, as its frequency is far away from

resonance, and there is no output at the CCD-camera.

For optical qubits, a stable laser (having ∼ 400 THz

frequencies) with a narrow line-width can drive the transitions

between the |0〉 and |1〉 states via a quadrupole transition,

enabling qubit control [62]. The hyperfine qubits can be

controlled with two methods. (i) Microwave radiation with

frequencies (e.g. 12.6 GHz for 171Yb+) matching the qubit

splitting can drive transitions between |0〉 and |1〉 states [63].

Microwaves can be generated with a microwave horn that

is located several centimeters from the trap. However, since

microwaves correspond to centimeters in wave length, and the

ions are separated by micrometers, it is not possible to focus

microwaves and address individual qubits in a chain of several

ions. (ii) Alternatively, stimulated Raman transitions with two

laser fields (from pulsed laser) can be used to control the qubit

state [64]. Each laser field excites the qubit states to a virtual

level |e〉 that is well detuned (by δ) from the excited p-states

(see Fig. 3b). The frequency difference between the two laser

fields is chosen to match the qubit splitting. Based on a Raman

process, the spins are rotated at a frequency proportional to

the product of the individual Rabi frequencies (from |0〉 to

|e〉 and from |1〉 to |e〉 determined by the laser power), and

inversely proportional to the detuning δ from the p-states. This

method has the advantage of selectively addressing the qubits,

where the laser can be focused individually on each qubit.

Typical timescales for single qubit operations are of the order

of several microseconds.

The Coulomb interaction between the ions serves to mediate

the coupling between the qubits [52]. Based on this interaction,

the qubit states are coupled to the vibrational modes of the
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ion-chain. Hence, appropriate laser frequencies can help to

transfer the qubit states to the vibrational modes. Depending

on the vibrational modes of the ion-trap, a subsequent ion in

the chain can be rotated with a laser, to demonstrate a CNOT

gate. The vibrational modes can also be swapped with the

subsequent qubit, resulting in a SWAP gate.

Like silicon spin qubits, trapped ion qubits have extremely

long relaxation and coherence times. The relaxation mecha-

nism is via spontaneous decay which approach several seconds

for optical qubits, and several days for hyperfine qubits. The

coherence of the qubits is primarily affected by ambient

magnetic field fluctuations which modify the qubit energy

levels through the Zeeman effect, laser intensity and frequency

fluctuations over time, and coupling of the qubit states to

the vibrational degree of freedom during 2-qubit operations

[65]. The sources of decoherence for the vibrational degree

of freedom include unstable trap parameters, coupling of

the electric dipole associated with the motion of ions to

thermal radiation in the environment, and ion collisions with

the residual background gas. Typical coherence times of the

trapped ion qubits due to these effects is of the order of

seconds.

The coupling rate between the qubit state and vibrational

mode (for two qubit operations) has been shown to be

inversely proportional to the square root of the number of

ions in the chain [61]. Hence, increasing the ion number in the

chain beyond ∼ 50 slows down the 2-qubit operations, where

decoherence (heating) of the motional modes and fluctuating

electric fields become significant. Architectures for scale up

with larger number of ions include Quantum Charge Coupled

Device (QCCD) architectures [66] where individual ions at the

edges of a trap are shuttled to nearby traps and made to interact

with them, for connecting distant qubits. This would require

exquisite control of the shuttling of the atomic ions, as well

as the periodically cooling down the excess motion arising

from shuttling ions. While this method could potentially work

for larger number of qubits (∼ 1000), it becomes impractical

for scale-up due to complexity of interconnects, diffraction of

optical beams, and extensive hardware requirements. Photonic

interfaces have been proposed to connect even larger systems

[61]. Here, qubits at the edges of the chain are driven to an

excited state with very fast laser pulses so that at most one pho-

ton emerges from each qubit after radiative decay. Following

selection rules, the radiative decay can lead to entanglement

between the photonic and trapped ion qubit. Photons from two

separate qubits are mode-matched and interfered on a beam-

splitter, which is then detected. A successful detection then

yields an entangled state between the two distant ion trap

qubits.

The design packages available in the conventional micro-

electronics industry cannot be directly extended to design

trapped ion qubits, as their implementation has very little

overlap with that of silicon. Nevertheless, the electric fields

available from classical electrostatic solvers (such as COM-

SOL) can be used to optimize and design the gate electrode

configuration and voltages for the trap. As illustrated previ-

ously in this section, the electronic orbital levels of single

ions (or even a cluster of ions) in the trap, determine the

laser frequencies needed for initialization, readout, control and

coupling of the trapped ion qubits. The orbital energies and

hyperfine interactions for a variety of trapped ion candidate

materials can be determined from ab-initio electronic struc-

ture calculation techniques such as density functional theory

(DFT). A significant aspect of the design also include the

optical setup for the lasers, including its power and focus.

These parameters can be obtained with commercial ray-tracing

software packages such as Zemax, Code V or Oslo. The

dynamics of the trapped ion qubits upon interaction with a

laser can be mapped onto a simplified Hamiltonian, which can

then be solved with commercial mathematical packages, such

as MATLAB. While there are several analytical expressions

and mathematical models for light-matter interactions, a device

simulator capable of capturing the non-idealities in realistic

trapped ion devices is currently non-existent.

C. Superconducting Transmon Qubits

Transmon qubits encode quantum information in the charge

states of superconducting islands connected by Josephson

junctions. The superconductors, typically Aluminum or Nio-

bium, are deposited on a silicon substrate, allowing transmon

qubits to be fabricated on a large scale with techniques adapted

from the microelectronics industry. A microscopic image of a

transmon qubit device is shown in Fig. 4a, and illustrates that

the qubit region spans length scales of tens of µm.

The simplified qubit Hamiltonian can be derived as a

quantum analog of a classical LC oscillator, where L is the

Josephson inductance, and C is the capacitance between the

superconductors [68]. The qubit splitting is then given by

E01 ≈ h̄/
√

LC , where h̄ is the reduced Planck constant. E01

is typically ∼ 5 GHz in units of frequency.

The total energy of the system is distributed between the

inductor and capacitor, and thereby consists of two parts :

(i) Josephson energy E J = h̄2/(4e2L), and (ii) charging

energy EC = e2/2C of the superconductors [69]. As charge

states constitute the qubit, they can heavily be susceptible to

electric field noise. The noise sensitivity can be minimized

with appropriate distribution of energies E J and EC . Fig.

4b plots the energy levels for several values of E J /EC , and

indicates that large values of E J /EC render the qubits robust

against noise. However, this will also lower the difference

between qubit splitting and other splittings in the system, often

called the anharmonicity. A large anharmonicity is required

to ensure that charge states with higher energy levels are not

excited while operating the qubit. As a trade-off, E J /EC is

normally chosen between 10 and 50 for sufficient robustness

of the qubit, along with anharmonicity Eδ ≈ EC/2 ∼ 100

MHz [67].

To perform quantum operations, the transmon qubits are

commonly placed adjacent to a superconducting resonator

(Fig. 4c), and is capacitively coupled to it (Fig. 4d) [67], [70],

[71]. Here, the qubit-resonator system is designed to be in

the dispersive regime, where the detuning (	 ∼ 100 MHz)

between qubit and the photonic mode of the resonator is much

larger than the coupling (g ∼ 10 MHz) between them. In

this regime, the shift in the resonator transmission frequency
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Fig. 4. (a) The transmon qubit consisting of two superconducting islands that are coupled through Josephson junctions and a large interdigitated
capacitance. Inset : SEM image of the device in the vicinity of the Josephson junctions. (b) Eigenenergies Em (first three levels, m = 0, 1, 2) of the
superconducting system as a function of the effective offset charge ng induced by nearby gate electrodes and environment [67]. Energies are given in
units of the transition energy E01 = E1 − E0 evaluated at ng = 1/2, and are calculated for various values of EJ /EC . The zero point energy is chosen
as the bottom of m = 0 level. For increasing values of EJ /EC , Em becomes more robust against fluctuations in ng arising from environmental noise,
whereas the anharmonicity (Eδ = E01 − E12) reduces. EJ /EC is chosen between 10 and 50 for transmon qubits in order to obtain robustness with
sufficient anharmonicity. (c) Schematic of a transmon qubit capacitively coupled to a superconducting resonator for initialization, readout and control [67].
The capacitance between various entities of the transmon-resonator system are also labeled. (d) Equivalent circuit of a transmon coupled to the resonator [67].
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.76.042319Figures 4(b), 4(c) and 4(d) are reprinted from Ref. [67] with permission from the American
Physical Society (APS).

from its fundamental mode frequency is given by ±g2/	,

where the sign (+ or −) depends on the qubit state [70]. By

applying microwave pulses to the resonator, and measuring its

transmission, the qubit state can hence be readout.

Resonant microwave pulses can be used to control the

qubits, as the qubit splitting is ∼ 5 GHz. Qubit control

timescales are a few hundreds of nanoseconds depending on

the quantum gate operation, and are much faster than that

of trapped ion and silicon spin qubits. Measurement of the

qubit, and its subsequent control also aids in deterministic

initialization of the qubit state.

Two qubits which are significantly detuned from the res-

onator, can be coupled to each other via the resonator. The cou-

pling rate between the qubits is given by
g1g2

2
(1/	1 + 1/	2),

where g1 and g2 are their individual coupling strengths to the

resonator, 	1 and 	2 are their detunings to the resonator [72].

However, the effective coupling rates (∼ MHz) between the

qubits, will still be smaller than the detunings (∼ 300 MHz)

between them, caused by differences in the qubit splittings

during manufacturing. As a result, the resonance frequency of

each qubit will be determined by the state of the other qubit,

similar to the electron/nuclear spin qubit splittings shown

in Fig. 2d. This enables conditional rotation of one qubit,

dependent on the state of the other qubit, and hence a CNOT

gate. Alternatively, direct capacitive coupling between two

adjacent transmon qubits can also be leveraged for demon-

strating CNOT gates. However, using only direct capacitive

coupling between the qubits leads to significant cross talk

when they are incorporated in a large-scale architecture.

Compared to silicon and trapped-ion qubits, the relaxation

and coherence times of superconducting qubits are short. The

main sources of decoherence arise from coupling of the qubits

to additional two level systems present in the bulk/interfaces

of the device, non-equilibrium quasi-particles generated from

stray-infrared light, and radiation to additional modes present

in device [73], [74]. The relaxation rate has also been shown

to be exponentially dependent on the temperature, due to

the qubit interaction with thermal photons [67]. As a result,

extremely low temperatures ∼ 20 mK are necessary for

high-fidelity operation of qubits. Different device designs and

operation regimes during the last decade have resulted in

improvements in the relaxation and coherence times by several

orders of magnitude. Dephasing times currently is of the order

of ∼ 100 µs.

The Josephson energy is strongly determined by the critical

current across the junction, which in turn is dependent on the

superconducting energy gap and the normal resistance (Rn) of

the Josephson junction when it is operated above the critical
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TABLE I

SUMMARY OF QUBIT IMPLEMENTATIONS

temperature [75]. Rn is determined by the thickness (few nm)

of the Josephson junction, and can be variable across different

devices. This results in non-uniform qubit splittings across

devices, with an in-homogeneity of ∼ 300 MHz. Another

significant challenge is the large size (several tens of µm) of

superconducting qubits, limiting the number of qubits that can

be coupled to each other via a single resonator, which spans

about a centimeter. Scaling up current demonstrations to a

large-scale architecture with millions of well-connected qubits

operating at extremely low temperature will benefit strongly

by a reduction in the size of the qubits [76].

While a standalone tool for designing superconducting

qubits is non-existent, parameters such as the capacitance

(for determining EC ) and inductance (for determining E J )

can be estimated with classical electrostatic and electromag-

netic packages such as FastCap and FastHenry respectively.

Microwave software such as TXLINE (in AWR Microwave

Office) has been used to design and estimate the characteristic

impedance of the superconducting resonator, that aids to

readout, control and couple the qubits. In addition, the elec-

tromagnetic fields experienced by the superconducting qubits,

can be obtained by solving the Maxwell’s Equations with high-

frequency electromagnetic simulators such as ANSYS-HFSS.

As for silicon and trapped-ion qubits, the qubit dynamics can

also be obtained by solving the simplified Hamiltonian with

mathematical packages.

To conclude this section, we reiterate that different imple-

mentations are unique with their qubit type, and methods

for qubit readout, control and interaction. We summarize our

description of the different qubit technologies in Table I.

IV. TESTING AND CHARACTERIZATION OF QUANTUM

DEVICES

In spite of the great progress in fabrication and control

of qubits, today’s quantum computing devices are far noisier

and error-prone than conventional digital circuits. Bit error

probabilities of 10−3 − 10−2 per qubit per operation (or per

clock cycle) are typical. Even with continued progress in qubit

technologies, it is unlikely that the errors incurred by phys-

ical qubits will ever become negligible. Thus understanding

and mitigating fault processes in qubit devices is a critical

aspect of quantum computer development. Correspondingly,

the experimental testing of qubit devices primarily concerns

the accuracy and reliability of hardware operation rather than

the correctness of the circuit logic.

Qubit device testing may be divided into two broad cate-

gories: characterization, wherein the goal is to obtain a detailed

model of a device’s fault modes; and benchmarking, wherein

the goal is to determine a few high-level performance metrics.

Characterization is the more costly type of testing but can

provide important insights leading to fault mitigation strategies

or improved devices. For simply assessing the performance of

a device, benchmarking is more practical.

A. Benchmarking: Metrics and Techniques

The most basic performance metric is the probability that

the device outputs the correct state. In the context of quantum

mechanics, this corresponds to the inner product (or “overlap”)

between the output state and the intended state, which is called

the fidelity. The infidelity, defined as 1 minus the fidelity,

quantifies the amount of error in the output state. Another

common way of quantifying the output error is in terms of

the geometric distance between the output state and the target

state in the complex vector space.

If a qubit device is used to output a specific quantum state,

e.g. some reference state or resource state, the fidelity of the

output with respect to this known state can be estimated by

measuring random subsets of qubits along various directions

of the Bloch sphere [77], [78]. In such cases, the experimental

cost scales favorably with the register size. However, a qubit

device would be used to perform a wide variety of compu-

tations each with a different output state, and these output

states presumably cannot be computed by any conventional

means. In this case one desires experimental metrics that

allow one to estimate or bound the fidelity of the device

output for any computation it performs. The state-of-the-art

approach for this purpose is Randomized Benchmarking [79]

(RB). RB is a technique for assessing how much, on average,

each operation decreases the output fidelity. Essentially, RB

involves measuring the final fidelity of a qubit for random

operation sequences of varying lengths. For weak uncorrelated

errors, the fidelity decays exponentially as a function of

sequence length. The RB decay constant is broadly interpreted

as the average error per gate, an obviously useful performance

metric. Extensions of RB have been devised to yield operation-

specific error metrics [80], [81], to incorporate multi-qubit
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operations [82], to include qubit loss [83], and to assess cross

talk [84]. While RB remains a very popular benchmarking

method, its underlying fault model is not universal; hence RB

in its current form may not be enitrely valid or accurate as

engineering efforts continue to make the simple fault modes

assumed by RB less and less prominent [85]. Additionally, it

has been noted that relating RB decay constants to operation

fidelities is subtly problematic [86].

B. Characterization via Quantum Tomography

An alternative to benchmarking is to thoroughly characterize

the fault modes of the device. Since the output state of a

quantum circuit is exponentially large in the number of qubits,

characterization of a quantum circuit as a whole is generally

infeasible. The established strategy is to characterize each

operation of a qubit device as completely as possible, so

that the result of any given sequence of operations can (in

principle) be predicted accurately. The general name for this

strategy is quantum tomography, a name derived from the

medical imaging technique in which a 3-dimensional image of

a subject is reconstructed from a set of 2-dimensional projec-

tions. In a similar manner, quantum tomography reconstructs

a quantum state or operation from multiple measurements,

each of which reveals a particular projection of the state. This

reconstruction is based on the fact that a quantum state is

uniquely specified by the probability distributions for certain

characteristic quantities of a physical system. (For a spin qubit,

the characteristic quantities are the projection of the spin along

three independent spatial directions.) State tomography is the

determination of the quantum state via statistical estimation

of these characteristic distributions. Tomographic methods

can also be used to characterize qubit operations. A qubit

operation can be thought of as a linear transformation of

the characteristic probability distributions. Quantum process

tomography is the determination of the transformation matrix

by characterizing the output state for each possible input state,

or more precisely, for a set of linearly independent states that

span the state space.

Quantum tomography as just described requires well-

calibrated measurements, whereas qubit measurements are

among the device operations that need to be characterized.

This problem is overcome with Gate Set Tomography [87],

[88], the state-of-the-art method for detailed characterization

of qubit devices. Gate set tomography involves tomographic

measurements of many different sequences of device opera-

tions. These sequences, which range in length up to hundreds

or thousands of operations, are carefully chosen to reveal all

possible types of qubit errors. The data is then fit to a highly

nonlinear model using a sophisticated procedure, yielding a

self-consistent model of all of a device’s operations, including

the measurement operations themselves. Gate Set Tomography

has been used to characterize and significantly improve the

control of trapped ion qubits [89].

C. Other Approaches

In addition to Randomized Benchmarking and Gate Set

Tomography, a number of other testing approaches have been

developed. Some of these remain theoretical proposals, while

others have had at least limited experimental demonstrations.

One approach is to test a quantum device utilizing another

quantum device, either as a reference or as a resource to

perform more powerful quantum-based tests [90]. This line

of approach stands to greatly reduce the cost of quantum

device characterization, but it requires the availability of well-

characterized quantum circuits that are similarly difficult to

certify.

Another approach is to exploit prior knowledge to reduce the

cost of conventional benchmarking and tomographic methods.

For example, adaptive testing based on Bayesian principles can

significantly accelerate both randomized benchmarking [91]

and tomography [92], [93]. In the case that the state or oper-

ation in question has some known characteristics (e.g. it has

low rank or belongs to a certain symmetry class), specialized

testing methods that are more efficient are applicable [94],

[95]. Related to this, the technique of compressive sensing

has been adapted to the quantum domain and applied to the

characterization of quantum states [96].

Other forms of testing may be categorized as model fitting,

e.g. determining particular parameters of qubit dynamics,

or assessing particular properties of the device output (e.g.

purity or entanglement). One recently-developed approach to

characterizing the quality of many-qubit devices is to measure

the distribution of output states produced by executing random

quantum circuits [97]. This reveals the extent to which the

device can create and maintain superpositions of computa-

tional states, a key facet of the “quantumness” of quantum

computation. Finally, there is now a rapidly growing interest

in the use of machine learning techniques for characterizing

quantum systems. Instead of attempting to match experimental

data to an intrinsically quantum model that is likely to be

intractable, researchers have begun to use neural nets to learn

the behavior of quantum systems from experimental data [98]–

[101]. The learning process implicitly creates a tractable model

of the quantum system.

V. QUANTUM CIRCUIT DESIGN AND SYNTHESIS

Quantum circuits provide a representation for how register

elements may be modified by a sequence of gates to implement

basic computation. As summarized in Sec. II, gates repre-

sent quantum mechanical operators that address one or more

register elements and by design, the gates are reversible and

represented by unitary matrices [102]. However, the available

gates are often restricted to well-defined subsets of available

operators from which a quantum circuit specification must

be constructed. Fixed-point arithmetic circuits can be used

for solving complex elementary functions including evaluation

of Taylor Series [103], [104]. In this section, we review the

design of quantum circuits with an emphasis on arithmetic

operations, such as addition, subtraction and multiplication,

which are required in the implementations of many quantum

algorithms [102], [105]. We also review the steps required

for the synthesis of quantum circuits into technology specific

implementations.

The design of quantum arithmetic circuits based on

Clifford+T gates has caught the attention of researchers [105]–
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Fig. 5. The Clifford+T gate set is a universal basis for expressing quantum
circuits.

Fig. 6. The circuit diagram for the three-qubit Toffoli gate and its matrix
representation.

Fig. 7. The Toffoli gate may be implemented as the series of Clifford and
T gates shown [111].

[108]. Figure 5 presents the quantum gates in the Clifford+T

gate set with their matrix and graphic representations.

The Clifford+T quantum gate set can be used to realize

multi-qubit logic gates such as the Toffoli and Fredkin gates

previously presented in the literature [109], [110]. These multi-

qubit gates will prove useful for describing the implementation

of quantum circuits presented in this article.

A. CNOT Gate

The CNOT gate belongs to the set of Clifford+T gate, cf.

Fig. 5, and maps 2 inputs to 2 outputs as A, B → A, A ⊕ B .

B. Toffoli Gate

Figure 6 presents the circuit diagram and matrix represen-

tations of the Toffoli gate, while Fig. 7 shows an example

Fig. 8. The circuit diagram for the Fredkin gate and its matrix representation.

Fig. 9. The Fredkin gate may be implemented as the series of Clifford and
T gates shown [111].

of how this three-qubit gate may be implemented as a series

of two-qubit Clifford gates and the T gate. Notably, the

Toffoli gate itself is universal for reversible logic and the 3

inputs produce 3 outputs according to the logical mapping

A, B, C → A, B, A · B ⊕ C .

C. Fredkin Gate

Figure 8 presents the circuit diagram for the three-qubit

Fredkin gate and its matrix representation. The Fredkin gate

is universal for reversible logic and, as shown in Fig. 9, it

can also be realized as a sequence of two-qubit Clifford gates

and T gates. The Fredkin gate maps 3 inputs to 3 outputs as

A, B, C → A, A · B + A · C, A · B + A · C .

Recent proposals for the realizations of reversible logic

gates and quantum circuits have focused on the fault tolerant

Clifford+T gate set due to its demonstrated tolerance to noise

errors [111], [112]. Potential fault-tolerant implementations of

these gates could play an important role in mitigating the noise

observed in current quantum computing devices [111]–[113].

While fault-tolerant implementations can help to tolerate lim-

ited amounts of noise [114], [115], it is important to note

that the overhead associated with the implementation of fault-

tolerant protocols can be significant [112], [113]. Therefore,

an important concern for designing quantum circuits is to

account for the resource overhead associated with each gate.

For example, fault-tolerant T gates are well-known to incur

a significant increase in resources, thereby making T-count

and T-depth important performance measures for fault-tolerant

quantum circuit design [114], [116].

The number of qubits in a quantum circuit is a resource

measure of interest because of the limited number of qubits

available on existing quantum computers [117], [118]. We now

define the T-count, T-depth, and qubit cost resource measures.

• Qubit cost: Qubit cost is the total number of qubits

required to design the quantum circuit.

• T-count: T-count is the total number of T gates used in

the quantum circuit
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Fig. 10. An example illustration for the steps in Bennett’s garbage removal
scheme described in the text.

• T-depth: T-depth is the number of T gate layers in the

circuit, where a layer consists of quantum operations that

can be performed simultaneously.

Quantum operators are reversible and therefore a quantum

circuit must establish a one-to-one mapping between the input

and output states. Ensuring a one-to-one mapping between

input and output states may require circuit overhead that

includes the use of ancillae qubits and garbage outputs. For

example, any constant inputs required by the quantum circuit

may be encoded using ancillae qubits. Garbage output refers

to output that may not be a useful part of the result but which

is necessary for the quantum circuit to preserve a one-to-one

mapping. The inputs regenerated at the circuit output are not

considered garbage outputs [110]. An ideal quantum circuit

would be garbageless in nature and efforts to minimize the

circuit overhead from ancillae and garbage outputs is an active

research area.

When a quantum circuit has garbage outputs, the garbage

outputs can be removed by using Bennett’s garbage removal

scheme [119]. Figure 10 illustrates the Bennett’s garbage

removal scheme. Let U represent an arbitrary quantum circuit

that performs f (x1, x2, · · · , xn−1, xn) and let U−1 represent

its logical inverse.

Bennett’s garbage removal scheme is a three-step progress.

After U is applied, all desired outputs are copied to ancillae

with CNOT gates. Then, U−1 is applied to the qubits of the

original circuit U . Thus, at the end of computation, the garbage

outputs have been restored to their initial values.

D. Quantum Arithmetic Circuits

The quantum logic gates presented in the previous section

can be combined to create quantum circuits that implement

quantum algorithms. As a demonstration of these ideas, we

present a series of quantum circuits designed for arithmetic

operations such as addition, subtraction and multiplication. We

draw these examples from recent results in the literature [106]–

[108], [120].

1) Quantum Circuit for Addition: We show an example of

a quantum ripple carry addition circuit with no input carry

Fig. 11. A 4-qubit example of the quantum ripple carry addition circuit with
no input carry [107].

presented in [107]. Consider the addition of two n-bit numbers

a and b stored at quantum registers |A〉 and |B〉 respectively.

Further, let quantum register location |An〉 be initialized with

z = 0. At the end of computation, the quantum register |B〉
will have the values sn−1:0 while the quantum register |A〉
keeps the value a. The additional quantum register location

|An〉 that initially stored the value z will have the value sn at

the end of computation. Here si is the sum bit and is defined

as:

si =
{

ai ⊕ bi ⊕ ci if 0 ≤ i ≤ n − 1

cn if i = n
(7)

where ci is the carry bit and is defined as:

ci =
{

0 if i = 0

ai−1 · bi−1 ⊕ bi−1 · ci−1 ⊕ ai−1 · ci−1 if 1 ≤ i ≤ n

(8)

Figure 11 illustrates the complete addition circuit for the case

of two 4 bit inputs a and b.

The carry bits ci are produced based on the inputs ai−1, bi−1

and the carry bit ci−1 from the previous stage. Each generated

carry bit ci is stored at the quantum register location |Ai 〉
that initially stored the value ai for 0 ≤ i ≤ n − 1. After

the generated carry bits are used in further computation, each

quantum register location |Ai 〉 is restored to the value ai while

each quantum register location |Bi 〉 stores the sum bit si for

0 ≤ i ≤ n−1. The restoration of |Ai 〉 to the value ai eliminates

all garbage outputs and transforming |Bi 〉 to the sum si cuts

the ancillae cost to 1.

2) Quantum Circuit for Multiplication: We present an

example of a quantum integer multiplication circuit that is

presented in [108]. The quantum circuit is based on a novel

design of a quantum conditional addition (Ctrl-Add) circuit

with no input carry and the Toffoli gate array. The quantum

multiplication circuit implements the shift and add multipli-

cation algorithm. As a result, the circuit will require a total

of n Ctrl-Add circuits and Toffoli gate arrays. The Ctrl-Add

circuits and Toffoli gate arrays are placed such that the shift

operations are accomplished with no additional gates.

Consider the multiplication of two n bit numbers a and b

stored in quantum registers |A〉 and |B〉 respectively. Further,

consider a quantum register |P〉 of size 2 · n + 1 initialized

to z = 0. At the end of computation, the quantum registers

|A〉 and |B〉 keep the values a and b respectively. At the end
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Fig. 12. A 4-qubit example of the quantum integer multiplication circuit
[108]

Fig. 13. A 4-qubit example of the quantum Ctrl-Add circuit with no input
carry [108].

of computation, the quantum register locations |P0:2·n−1〉 will

have the product of a and b. The quantum register location

|P2·n〉 will be restored to the value 0.

Figure 12 illustrates the quantum integer multiplication

circuit for the case of two 4 bit inputs a and b.

Figure 13 illustrates the quantum Ctrl-Add circuit used in

the quantum multiplier for the case of two 4 bit inputs a and b.

The operation of the quantum Ctrl-Add circuit is conditioned

on the value of the qubit |ctrl〉. When |ctrl = 1〉, the circuit

performs addition. The sum of a and b will appear on the

quantum register that originally holds the value b at the end

of computation. The quantum register that originally holds the

value a will be restored to the value a. When |ctrl = 0〉, the

quantum registers that initially hold the values a and b will

be restored to the values a and b at the end of computation.

3) Application of Quantum Arithmetic Circuits in Taylor

Series: In this section, we present an application of the quan-

tum multiplication and quantum addition circuits presented

in the previous section. For this example, we consider a

quantum circuit implementation of the Taylor series expansion.

Taylor series are used in quantum algorithms for scientific

computation such as to calculate the Hamiltonian evolution of

a quantum system or in simulation of open quantum systems

[121]–[123]. Further, Taylor series polynomials are used to

Fig. 14. Quantum circuit diagrams for the gates used in computing the Taylor
series circuit.

approximate functions frequently used in scientific computing

applications such as sin(x), ln(x) and ex . These functions

have use in additional quantum algorithms besides those for

Hamiltonian evolution such as algorithms for Pell’s equation

and the principal ideal problem [123], [124]. The value of a

given function f (x) near a point c is estimated by computing

the Taylor series equation shown below:

f (x) ≈
∞∑

i=0

f i (c)

i !
· (x − c)i (9)

We will consider an example for a Taylor series limited to

the first three terms, i.e.,

f (x) ≈ f (c) + f ′(c) · (x − c) +
f ′′(c)

2
· (x − c)2, (10)

in which we compute this approximation for f (x) centered at

value c. Let c and x be n-bit values stored in quantum registers

|x〉 and |c〉, respectively. Further, let f (c), f ′(c) and f ′′(c)/2

be represented as n-bit numbers stored at quantum registers

| f (c)〉,
∣∣ f ′(c)

〉
and

∣∣ f ′′(c)/2
〉

respectively. Lastly, consider

quantum registers |Y1〉, |Y2〉, |Y3〉 and |Y4〉 that contain ancillae

set to 0. At the end of computation, quantum register |Y4〉 will

have the first three terms of the Taylor series expansion. The

quantum registers |c〉, |x〉, | f (c)〉,
∣∣ f ′(c)

〉
and

∣∣ f ′′(c)/2
〉

will

be restored to the values c, x , f (c), f ′(c) and f ′′(c)/2 at

the end of computation. The quantum registers |Y1〉, |Y2〉 and

|Y3〉 that initially held ancillae will be restored to their initial

values.

The quantum Taylor series circuit is built from the quantum

addition circuit, the quantum subtraction circuit, the quantum

multiplication circuit and the logical reverse of the quantum

multiplication circuit. Figure 14 shows the graphical repre-

sentation of components used in the Taylor series circuit. We

will use a quantum subtraction circuit based on the ripple carry

adder presented in this article that was presented in [120].

Figure 15 illustrates an example of the quantum subtraction

circuit based on the design in [120]. The quantum circuit

shown calculates b + a where b + a = b − a. Given two 2′s
complement inputs, the quantum subtractor will not experience

overflow. Therefore, the circuitry used to calculate the sum bit

sn is removed from the quantum adder because the circuitry is
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Fig. 15. A 4-qubit example of the conversion of a quantum addition circuit
into a subtraction circuit via the procedure in [120].

Fig. 16. Generation of the quantum circuit for the calculation of the first
three terms of the Taylor series of f (x): Steps 1-2

not needed to calculate b + a. The steps to design the quantum

Taylor series circuit are explained below. Figure 16 illustrates

Steps 1 and 2.

• Step 1: Calculate f (x) ≈ f (c)+ f ′(c)·(x−c)+ f ′′(c)
2

·(x−
c)2. We use the quantum multiplication circuit, quantum

addition circuit and quantum subtraction circuit in this

Step. The result of the quantum subtraction circuit x − c

is copied to ancillae using an array of n CNOT gates.

• Step 2: Remove garbage output. At the end of Step 1,

three quantum registers (|Y1〉, |Y2〉 and |Y3〉) that initially

held ancillae are transformed to f (c) + f ′(c) · (x − c),

(x − c)2 and (x − c). Further, at the end of computation,

quantum register |x〉 that initially held the value x has

Fig. 17. Generic Automatic Quantum Circuit Synthesis Design Flow. Derived
from representation in [125].

been transformed to the value x − c. These outputs

are garbage outputs. We use the logical reverse of the

quantum multiplication circuit, the quantum adder, the

quantum subtraction circuit and an array of CNOT gates

to remove these garbage outputs.

E. Quantum Circuit Synthesis

Quantum circuit synthesis is the generation of a quantum

circuit derived from a given input definition and any necessary

constraints. While this process may be either manual or auto-

mated, a typical generic quantum circuit synthesis design flow

is shown in Fig. 17. The first step of pre-synthesis optimization

includes the addition of ancilla lines and output ordering to

satisfy reversibility. The synthesis step then transforms any

irreversible operation into a reversible operation – this step

may be performed either optimally or heuristically. There are

many different optimal methods for quantum circuit synthesis

including those proposed in Ref. [126]–[128]. However, many

circuits grow non-lineary with input size and they can quickly
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become too large for optimal synthesis techniques. Heuristic

algorithms, such as decision diagrams (see [127], [129]) and

the search of circuit databases (see [125]), are widely used in

these limits. Such heuristic synthesis methods are often sub-

optimal and therefore further improvements may be achieved

by local optimization methods. In general, synthesis methods

can optimize resource metrics by reducing gate count, reducing

the number of ancillae qubits, reducing the overall circuit

depth, and improving locality. Post-synthesis optimization

techniques such as template matching [125], [127] can also

be employed to further achieve better resource usage. Finally,

during the technology mapping stage, the quantum circuit is

mapped (decomposed) into the intrinsic gates available within

the target technology. The growing literature on the topic of

quantum circuit synthesis for various levels of abstraction hints

at many important avenues of research [125]–[127], [129]–

[133].

VI. SUMMARY AND OUTLOOK

We have summarized the basic features and requirements

for quantum computing devices. This includes the fundamental

criteria that a quantum computing device must implement as

well as the the principles of operation for performing compu-

tation within the circuit model. We have reviewed the state of

the art in three specific technologies currently being developed

for quantum computing devices. Silicon spins, trapped ions,

and superconducting transmons represent three of the leading

approaches for quantum computing but these devices still

face fundamental research challenges. Therefore, methods

to accurately characterize and benchmark the behavior of

quantum computing devices plays an important role in design

and testing. We have emphasized the necessity of statistical

analysis to infer the operation of quantum devices. We have

also discussed the design of quantum circuits for the case of

arithmetic operations, which represent an important use case

for future quantum computing devices. These circuits were

designed to minimize the occurrence of a specific instruction,

the T gate, due to the expected complexity of fault-tolerant

implementation. These designs are expected to play a critical

role in future device operation as trade-offs in gate and device

complexity become more sophisticated. While we have not

discussed logic test for quantum circuits, there are existing

methods for fault detection in classical reversible circuits

that might be applicable to quantum circuits [134]–[137].

As an example, quantum circuits with noisy gates would

require novel fault-models and novel methods for test-vector

generation [138]. Therefore, we anticipate that the fault-testing

of quantum circuits will be an important future research area.

The design and testing of early quantum computing devices

faces many near-term challenges. We have emphasized a small

subset of the technologies currently under investigation for

developing quantum computing devices. However, there are

many more approaches to be considered, each with their own

nuanced physics. This suggests that variations in the physics

of each quantum computing technology may lead to different

implementations for design and testing. Comparison across

technologies will require standard calibration techniques that

have yet to be developed. In addition, methods for quantifying

well-defined metrics will be important for evaluating device

performance. Current testing is focused on meeting the min-

imal criteria for functionality in the regime of noisy, error-

prone, and faulty devices. Finally, we note that the current

state of quantum computing remains focused on relatively

small scale devices. Future devices, or networks of devices, are

likely to include quantum registers with millions of elements

and sequences with millions of highly parallelized instructions.

Those devices and circuits will require more sophisticated

methods for design and testing.
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