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High-Performance Computing with Quantum Processing Units
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The prospects of quantum computing have driven efforts to realize fully functional quantum processing units
(QPUs). Recent success in developing proof-of-principle QPUs has prompted the question of how to integrate
these emerging processors into modern high-performance computing (HPC) systems. We examine how QPUs
can be integrated into current and future HPC system architectures by accounting for functional and phys-
ical design requirements. We identify two integration pathways that are differentiated by infrastructure
constraints on the QPU and the use cases expected for the HPC system. This includes a tight integration
that assumes infrastructure bottlenecks can be overcome as well as a loose integration that assumes they
cannot. We find that the performance of both approaches is likely to depend on the quantum interconnect
that serves to entangle multiple QPUs. We also identify several challenges in assessing QPU performance for
HPC, and we consider new metrics that capture the interplay between system architecture and the quantum
parallelism underlying computational performance.
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1. INTRODUCTION

High-performance computing (HPC) has historically taken advantage of new process-
ing paradigms by leveraging special-purpose accelerators. This includes the use of al-
gorithmic logic units and floating-point units in early processor architectures as well as
more recent vector processors capable of single-instruction multiple-data (SIMD) par-
allelization. Current interest in graphical processing units (GPUs) is another example
of the ongoing trend in accelerator use for HPC development. A primary motivation
for the accelerator paradigm is that low-level processes can take advantage of special-
ized hardware while minimizing changes to overall program structure [Kindratenko
et al. 2008]. This approach isolates the need for program or algorithm refactoring to
those workloads specific to the hardware accelerator [Schneider 2015]. A secondary
motivation is that the accelerator model offers an opportunity to take advantage of
emerging technologies while also mitigating the technical risk to system development.
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Current limitations on processor frequency, communication bandwidth, physical scale,
energy consumption, and hardware reliability make it advantageous for HPC designers
to anticipate new technologies and to leverage architectures that support innovative
platforms. Future efforts to realize HPC beyond the current exascale target are likely
to require such innovations [Ang et al. 2010; Ashby et al. 2010; Geist and Lucas 2009].

The search for technology paths that lead to performance beyond exascale may re-
quire alternative computational models. This is because some problems are better
suited to computational models other than the standard Turing machine model. In
particular, quantum computing has attracted significant interest due to theoretical
results that exponential reductions in algorithmic complexity of some problems are
possible relative to the best-known conventional algorithms [Simon 1997]. This in-
cludes the factorization of integers, a staple of public-key cryptography [Shor 1997]; ab
initio calculations of electronic structure in chemistry and physics [Kassal et al. 2011];
and scattering amplitudes of particles in high-energy physics [Abrams and Lloyd 1997].
These algorithmic speedups are achieved by leveraging the unique features of quan-
tum mechanics, namely superposition, entanglement, and intrinsic randomness. The
basic principles of quantum computing have been demonstrated in small-scale experi-
mental systems, and there is an on-going, global effort to develop large-scale quantum
computing platforms.

The opportunities afforded by quantum computing represent a challenge to the HPC
accelerator model, which previously has been practiced exclusively within the setting
of the classical, deterministic Turing model. By contrast, many quantum algorithms
lack clearly defined kernels that can be off-loaded to a quantum computational acceler-
ator. The mixture of computational models also stymies efforts to leverage conventional
notions of SIMD and multiple-instruction multiple-data (MIMD) parallelism. Parallel
computing typically makes use of domain decomposition [van Nieuwpoort et al. 2001],
whereas quantum algorithms frequently intentionally avoid this type of problem par-
titioning [Bauer et al. 2016; Kreula et al. 2015]. In addition, domain decomposition
exposes an interface between classical and quantum computational models that is
not yet well defined. Translation between computational models may be theoretically
possible but making these interfaces efficient and robust is an outstanding concern.

As constraints on the physics underlying quantum computation limit how these re-
sources may be used, it is unclear if and how emerging quantum processors will become
compatible with existing or future HPC platforms. We analyze the integration of these
quantum processing units (QPUs) for modern HPC architectures. We place an empha-
sis on conceptual differences between the conventional and quantum computing models
that may be expected to challenge integration. Our analysis examines two pathways
that lead to several abstract machine architectures. We identify those distinguishing
features that QPUs may be expected to exhibit and the dimensions that will be most
useful for characterizing their performance metrics within a hybrid system.

The article is organized as follows. In Section 2, we characterize the features of a QPU,
briefly summarize its operating principles, and identify requirements for operation that
influence HPC integration. In Section 3, we examine three multi-processing models for
adopting QPUs into conventional HPC systems and the architectures that arise from
them. In Section 4, we describe the need for both standardized as well as unique
performance metrics to characterize HPC with quantum accelerators. We offer final
remarks in Section 5.

2. QUANTUM PROCESSING UNIT

We define a QPU to be a computational unit that uses quantum computing principles to
perform a task. As the operating principles of a QPU are based on quantum mechanics,
there are several unique features that do not have analogs in conventional computing
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platforms. Foremost, a QPU stores computational states in the form of a quantum
mechanical state. While a quantum state is formally defined as a unit vector in a finite-
dimensional Hilbert space [Nielsen and Chuang 2000], it must also be interpreted as
the data processed by the QPU. The simplest and most frequently used example is a
qubit, which expresses a state within a two-dimensional Hilbert space. These states are
stored in quantum physical systems. For the purpose of clarity, we define a quantum
register as an addressable array of two-level quantum physical systems. We will refer
to an individual system within the register as a quantum register element, and we will
assume that each register element can store a qubit of information. We may refer to
the size of the register by the number of qubits that it can store, for example, an n-qubit
register.

The computational space available to a quantum register scales exponentially with
its size. Like an n-bit register, an n-qubit register is capable of representing all 2n

computational states. However, the quantum register is also capable of representing
superpositions of these states simultaneously, some of which cannot be expressed clas-
sically, using a phenomenon known as entanglement. Fundamentally, entanglement is
a limitation on the ability to describe states of a register solely by specifying the value of
each register element. This is in stark contrast to classical models of computation and
leads to a description of what has been called the “inherent parallelism” of quantum
computing [Deutsch 1985]. This inseparability of register states manifests as perfect
correlations during computation, and many quantum algorithms take advantage of
entanglement to realize computational speedups [Childs and van Dam 2010].

Operations on the quantum register are realized using gates. Like conventional
computing, quantum gates correspond with well-defined transformations of the com-
putational state. When the register is prepared in a superposition state, operations
effectively act on multiple computational states in parallel. This may be viewed as
a quantum variant of conventional SIMD processing. However, quantum computing
makes use of gates that are either unitary transforms of the register elements or pro-
jective measurements. Only the latter gates prepare the state of the quantum register
in a well-defined classical value, for example, either a 0 or 1 for each register element.
For a unitary gate, the value of the register remains in a superposition of computational
states and serves as an intermediate computation. Ultimately, the solution to a com-
putation is recovered when a projective measurement gate is applied to the register.
The resulting bit string must then be stored in a classical register within the QPU.

Quantum computational models define how the registers and gates within a QPU re-
alize quantum computation. While all the models offer identical computational power
from a complexity perspective, they do differ with respect to hardware implementations
and principles of operation. For example, the quantum circuit model is closely related
to the conventional representations of classical circuits, as it uses sequences of discrete
gates acting on registers to generate a series of computational states. By contrast, the
adiabatic quantum computing model uses a continuous, time-dependent transforma-
tion of the interactions between register elements to evolve the computational state
toward a solution. For example, recent special-purpose processors within the adiabatic
quantum computing model implement quantum optimization using a single instruc-
tion that is tunable in duration [Johnson et al. 2011]. Across all computational models,
QPUs require precise control over the quantum physical degrees of freedom defining
register elements. There is an ongoing effort to demonstrate proof-of-principle regis-
ters and gates within a variety of physical systems, including silicon donor systems
[Saeedi et al. 2013], trapped ions [Monroe and Kim 2013], and superconducting cir-
cuits [Devoret and Schoelkopf 2013]. A specific focus has been on realizing high-fidelity
implementations that can support fault-tolerant operation. In addition, there has been
some work to design the physical layout and instruction architectures for certain
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Fig. 1. A sequence diagram modeling the interactions between a host CPU and a QPU. The QPU interface
defines the internal QRAM model and drives gates operating on the register. The QCU parses the incoming
instructions and the outgoing response according to the computational model and device physics.

technologies [Meter and Oskin 2006; Thaker et al. 2006; Van Meter et al. 2010; Jones
et al. 2012; Metodi et al. 2011; Hill et al. 2015; Humble et al. 2014].

A typical usage case for a QPU begins by preparing the quantum register in a well-
defined initial state and then applying a sequence of gates that may act on individual or
multiple register elements. This is commonly referred to as the quantum random access
memory (QRAM) model, first articulated by Knill [1996]. We define a QPU to include a
QRAM that applies low-level gates to register elements, a quantum control unit (QCU)
that parses programs into instructions, and a classical controller interface that defines
how the central processing unit (CPU) within a host system interacts with the QPU.
The exact sequence of gates is determined by the host program, which the QCU parses
into an intermediate representation using an instruction set architecture (ISA). The
ISA represents a set of high-level instructions that are available for programming the
QRAM. Instruction sequences are generated when a compiled program is decoded by
the QCU, after which the instructions are parsed by the QRAM into gates, that is,
machine codes, that are specific to the QPU technology base. At present, there are
a variety of technologies under consideration for quantum computing, and they each
support different sets of gates that are native to their respective technology bases.
The unique ISA defining each technology base indicates the need for abstraction of the
QCU interface. The standardization of the QCU interface will not only promote robust
QPU design across different technologies but also assist integration of these devices
into larger system designs.

Applying the QRAM model within the QPU context defines an interface with the
classical controller allocated to the host CPU (see Figure 1). The CPU tasks the QPU
by submitting a program and then waits for the reply. These tasks must represent
quantum computational workloads that can be parsed out by the QCU, where the in-
terface may be implemented in software or hardware. Development of these interfaces
is still an open question, although recent progress has been made in defining quantum
programming languages for this purpose [Selinger 2004; Green et al. 2013; Wecker
and Svore 2014; Abhari et al. 2012]. These languages offer exposure to the gates and
registers needed for programming low-level quantum algorithms, and we expect future
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generations will likely grow to addressing additional data structures and instructions.
Interfaces that encapsulate and mask quantum hardware details from the software de-
veloper are especially important for maintaining existing applications across a variety
of HPC environments. As an example, an application program interface that requires
software developers to integrate quantum processing instructions directly into the code
base will prevent its adoption (due to the burden of code rewriting).

In addition to local operations driven by a host CPU, a QPU may also interact di-
rectly with other QPUs. This may be necessary to communicate a computational state
between QPUs or to prepare both registers in a mutually entangled state. These op-
erations require the presence of a quantum network, which uses quantum physical
systems to communicate quantum states between registers. However, a notable fea-
ture of quantum computing is that intermediate computations cannot be copied during
the communication. This is a consequence of the no-cloning theorem from quantum
mechanics that limits the precision with which arbitrary quantum states can be du-
plicated. Instead, communication between QPUs must use either direct transmission
or teleportation [Nielsen and Chuang 2000]. Direct transmission transfers the value
of the first register over the quantum network by using a mobile quantum carrier.
On receiving the transmission, the second QPU swaps this state into its register. This
approach most closely resembles conventional read-write communication in an HPC
network. But quantum communication also supports teleportation, which allows for
the value of a first register to be transferred to a second register without passing
through the quantum network. Instead, teleportation uses pre-existing entanglement
between the QPUs to perform the data transfer. This does also require transmission
of classical side-channel information from the first QPU to the second; however. this
classical information is generally much less than the information needed to describe
the value of the quantum register.

3. QPU INTEGRATION STRATEGIES

The simplified CPU-QPU execution model presented in Section 2 offers a variety of
different integration strategies for the development of large-scale hybrid computing
systems. A significant obstacle to integration is the physical hardware requirements
of current experimental quantum computing devices. Many technologies that could be
used to realize a fully functional QPU currently require bulky and costly infrastructure.
This includes the use of dilution refrigerators to suppress thermal noise, electromag-
netic shielding to avert ambient energy, and ultra-high vacuum enclosures to prevent
device contamination. In addition, most devices require relatively complex electronic
and optical control systems that must cross the physical barriers to the processor. An
exemplary system schematic is shown in Figure 2.

We anticipate that QPU requirements will ease with future device development and
refined engineering principles. For example, recent work on ultra-cold operation of
field-programmable gate arrays (FPGAs) to drive silicon qubits suggests there is a
path toward integration of the QPU control interface within the dilution refrigerator
[Hornibrook et al. 2015]. Similarly, progress in the miniaturization of electronic controls
for linear optical quantum chips hints at scalable operations in the future [Carolan et al.
2015]. However, these devices still remain far from the typical hardware environments
on which modern HPC systems have been built, namely, room-temperature operation,
direct interaction with the host CPU, and easily managed footprints for individual
processors. Consequently, integration opportunities for QPUs naturally separate into
loosely and tightly bound systems.

In the loose integration path, QPUs remain as isolated operational elements that
must interact with a host HPC system using a network interface. This is effectively a
client-server model as shown in Figure 3 where the quantum computing (QC) server
may either be on a dedicated network or part of a larger computational grid. In this
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Fig. 2. Asymmetric multi-processor architecture for integrating a stand-alone quantum computer (QC) with
an HPC system. We highlight components of the QC system that represent the substantial infrastructure
required for interfacing and controlling the QPU.

Fig. 3. An asymmetric multiprocessor model employing a quantum computing (QC) server, for example, a
form of cloud-based quantum computing. The dashed lines indicate a quantum interconnects between QPUs
while solid lines indicate classical interconnects. The concept of QC as a service offers increased flexibility
and ease of use at the expense of communication latencies. Latencies will contribute to overall execution
timing and, depending on problem and program structure, could partially negate quantum computational
advantages.

asymmetric multi-processor model, the network communicates requests between the
host (client) system and the QC server. As indicated in Figure 3, the QC server may
host multiple QPUs and these may interact via a quantum interconnect. However, the
entry point into the system remains the primary bottleneck. This connection can be
streamlined when both systems are within a local area network, but access to each
QPU must still be provisioned by the QC control system. This control system may
appear as a switch that forwards program data to individual QPUs, or it may more
intelligently route programs based on QPU usage and demand.

The demands of the client-server model in Figure 3 force a tradeoff between the com-
munication latency and the computational speedup gained from using a QPU instead
of a CPU (or some other local resource). This tradeoff is advantageous when the com-
munication time is offset by the QPU speedup, but this will depend on problem type as
well as size. Moreover, evaluation of the model is complicated by the communication
patterns arising from multiple CPU nodes and any latency they may experience from
resource competition. Therefore, the client-server model is likely to be broadly useful
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Fig. 4. (Left) A shared resource model in which a single QPU is accessed by multiple CPU nodes. (Right)
A standard accelerator model in which QPUs are attached to nodes hosted on a classical interconnect. The
absence of quantum networking between QPUs restricts the scaling with respect to the quantum resources
and enforces a classical domain decomposition paradigm.

Fig. 5. An accelerator model with QPUs incorporating a quantum interconnect that supports both quantum
and classical parallelism. QPUs may be addressed individually or collectively through the coordinated CPU
elements.

only when the computational gain over conventional approaches is significant. This
adds emphasis to the importance of the underlying quantum algorithm.

The loosely integrated client-server model also supports the alternative use case of
cloud-based quantum computing. In this setting, the QC server is a rare resource in de-
mand from multiple users simultaneously. For a system containing q QPUs, the server
can support classical MIMD parallelism with each node performing an isolated job. As
a measure of server capacity, the dimension of the server Hilbert space is q2n given
an n-qubit register on each node. By contrast, the presence of a quantum interconnect
linking the individual QPUs offers a Hilbert space of 2nq. This exponential increase in
server capacity with node number is not a guarantee of computational speedup. The
cloud-based quantum computing model may be especially attractive for blind quantum
computing, which permits a user to submit a job request without revealing details
about either the data or instructions [Broadbent et al. 2009].

The tight integration path is shown in Figures 4 and 5 and represents a progression
toward more sophisticated accelerator models. The goal of this design is to move the
QPU closer to the host node in order to eliminate communication latency and maximize
computational speedup. This design assumes the hardware requirements for QPUs can
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be eased to the point that a single, tightly connected single-system model can be created.
As mentioned above, this will require multiple advances in the classical infrastructure
used by current experimental devices. Figure 4 (left) represents a first design based
on a shared resource model that permits multiple CPU nodes to interact with a single
QPU node. Like the server model, a single QPU is responsible for managing requests for
multiple CPUs and requires a robust classical controller interface. This communication
design also represents a bottleneck but the tighter integration alleviates some of the
overhead required in the loose model. In addition, data from multiple CPUs can be
aggregated by the QPU. This use case may appear when pre-processing of the input
for the QPU can be parallelized across CPU nodes. Alternatively, if the QPU is part of
a MIMD or data streaming model, then the redirection of QPU results to another node
may be useful.

A more pronounced example of the accelerator model is presented in the right panel
of Figure 4. This design most closely matches that used for integrating GPU accelera-
tors into modern HPC systems as each CPU node is tightly integrated with a dedicated
QPU. This greatly simplifies the QPU interface. This hardware model also naturally
matches many existing program data access patterns, in which top-level memory man-
agement is driven by domain decomposition with low-level data movement restricted
to single nodes. In this sense, the design is motivated by an initial application of clas-
sical parallelism and subsequently followed by quantum parallelism. While this model
offers the appeal that it would minimize the refactoring required of existing source
codes, it also restricts the amount of quantum parallelism available.

The accelerator design allows for running multiple quantum algorithms simulta-
neously on independent QPUs. In the near term, we envision QPU size to be the
significant factor limiting problem size, so applications that can take advantage of this
loose integration design are the applications most likely to see significant benefits early
from the integration of QPUs into HPC systems. However, this is not the only approach
to using the accelerator architecture. As a form of this type of domain decomposition,
divide-and-conquer offers a classical approach to parallelism that is needed to justify
a network of isolated QPUs. For example, recent work by Peruzzo et al. have shown
variational eigensolvers for computational chemistry can accommodate a divide-and-
conquer strategy for calculating the lowest-energy ground state [Peruzzo et al. 2014].
However, for many quantum algorithms, parallelizable divide-and-conquer strategies
have not yet been developed and may not even be possible. This poses a problem when
a single QPU does not contain enough qubits in its registers to support the specified
size of a desired algorithm instance. The additional QPUs available in the accelerator
architecture do not enable the user to scale the problem size up, because there is no en-
tanglement across QPUs. Instead, quantum algorithms that utilize divide-and-conquer
approaches are needed [Peruzzo et al. 2014; Yung et al. 2014].

Figure 5 represents an accelerator model in which individual QPUs are intercon-
nected. The quantum interconnect establishes quantum communication between each
QPU and offers the possibility of generating entangled states between registers. Like
the conventional interconnect used to establish communication between CPU nodes,
the quantum interconnect will require additional switches and possibly routers to
perform robust communication [Dasari et al. 2016]. In this tightly integrated limit,
a collection of interconnected QPUs may be abstracted as a single QRAM accessed
through interfaces at multiple CPU nodes. This design offers the benefit of maximizing
the potential quantum parallelism by allowing for a single quantum algorithm to be
distributed across multiple QPUs (without a divide-and-conquer strategy). This tight
integration design creates two partitions, the first being the set of QPUs, which hold
all the data used by an algorithm, and the second being the set of CPUs, which hold all
the instructions used by the same algorithm.
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The interfaces between CPUs and QPUs, while varying in their implementation, are
well understood to be classical in nature, meaning that CPUs will pass classical states
to the QPUs, which will in turn be transformed into quantum states via a digital-
to-analog converter (DAC) and QPUs need only pass back classical states to CPUs
(see Figure 1). The introduction of a quantum interconnect, however, presents the
opportunity for the communication of sustained superposition and entangled states.
As mentioned above, at a high-level, this could be implemented as a single QRAM
interacting with multiple QPUs attached to their respective CPUs. Alternatively, the
concept of flying qubits [DiVincenzo 2000] is well understood today, and numerous
physical implementations have been implemented using optical technology, which may
serve as a data passing medium of qubit states between multiple QPUs.

4. PERFORMANCE METRICS

An important aspect in evaluating the merits of QPUs for use in any of the system
integration strategies is identifying performance metrics that are both well defined
and meaningful. Basic metrics for conventional computing typically focus on register
size, word size, floating point operations per second (FLOPS), and so on. More elaborate
measures take account of multi-threaded processor pipelines, memory access speeds,
and communication latency. Processing models that include SIMD and MIMD paral-
lelism are also judged according to use cases and targeted problem sets. Each metric
can also be monetized, for example, FLOPS per watt and FLOPS per unit currency, to
address specific stakeholder interests.

Despite a long history of evaluating conventional HPC systems, the unique features
of QPUs pose new challenges in measuring performance. First and foremost is the
difference in the underlying computational model. For example, QCUs and QRAMs
will certainly require clocks to execute the instructions and machine codes acting on
the quantum register, but the speed of the clock is not directly proportional to the speed
at which gates are applied. Instead, the gates themselves are complicated sequences
of control signals applied to the physical system and they cannot be made arbitrarily
fast. The speed of gate execution is complicated further by the use of fault-tolerant (FT)
instruction protocols. These protocols protect against errors but necessarily require the
use of additional primitive gates and qubits [Nielsen and Chuang 2000]. Fault-tolerant
instruction protocols may vary with program sequence as well as data locality. Since the
context of the program ultimately determines the speed at which gates are executed,
the quantum FLOPS analogy for measuring QPU performance is poorly defined.

Nevertheless, QPU performance can be measured (see Table I). The most widely
discussed metric of QPU performance is number of qubits, which in most cases is cor-
related to the problem size that can be executed on the QPU. An increased number of
qubits does not necessarily speed up the performance of an algorithm as the computa-
tional complexity of the algorithm may be constant or the increased number of qubits
used by an algorithm may not mean a longer sequence of gates is used to execute
the algorithm. Thus an increased number of qubits available on a QPU may simply
enable moving from fixed-point variables to floating-point variables for results with
greater resolution. Alternatively, for quantum algorithms that can be executed in a
divide-and-conquer fashion, the number of qubits on a QPU may play a major role in
algorithmic performance as fewer executions of sub-problems will need to be executed
as the number of qubits, and, consequently, the size of the sub-problems, grows.

Another measure is the relative overhead required by the FT instruction protocols
for the ISA. At the scope of the QCU, the cycles per instruction can be extracted.
Moreover, the longest duration gate within a QRAM can serve as a worst-case measure
of performance, while the shortest gate reflects best time cost. The timing difference
between these instructions offers a measure of the spread in QRAM performance on
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Table I. Metrics of Performance for a QPU

Metric Significance
Number of Qubits Problem size capabilities
FTQEC Qubit Overhead Number of additional qubits required to implement FTQEC
FTQEC Gate Overhead Number of additional gates required to implement FTQEC
Clock Cycles Per Gate Basis for determining quantum computation time
FTQEC Latency Additional computation time needed to incorporate FTQEC
Number of Gates Number of gates used to complete circuit
Sample Rate The lifecycle frequency to obtain a result and reset a circuit to obtain an

additional result
Entanglement Latency Time needed to initially entangle a set of qubits
Entanglement Rate Time needed to refresh or reestablish entanglement between a set qubits
Intra-QPU Connectivity The number of qubits a single qubit can entangle with directly
Inter-QPU Connectivity The number of qubits a single qubit can entangle with indirectly or at a

remote site
Teleportation Rate The rate at which quantum data can be exchanged
ISA Complexity The diversity of gates that can being executed

any random gate instance. The same measures can be applied to the complete set of
QPU instructions to compile a snapshot of worst- and best-case timings.

These definitions do not require reference to a particular technology, as they rely
on abstraction of the QRAM and QPU interfaces. This is advantageous for making
performance comparisons against different technologies, which may have widely
different physics and control signals. Different QPU technologies may also employ
vastly different ISAs in a manner that is reminiscent of reduced instruction set
computing (RISC) versus complex instruction set computing (CISC) designs. For
example, a QPU based on the adiabatic quantum computing model may use a single,
time-continuous gate to implement an instruction that requires a significant amount
of classical processing overhead to ready the data for quantum processor execution,
whereas the same instruction would be realized in the circuit model using a lengthy
sequence of discrete primitive gates with minimal classical processing overhead.
A comparison between these different QPUs that simply references gate duration
and spread forgoes these important details. Additionally, task-specific QPUs will
necessitate special-purpose metrics to differentiate between how problems are solved.
Restrictions on processor behavior can be useful, however, for purposes of forming
comparisons provided that the context is well specified.

An additional consideration for measuring QPU performance is that quantum al-
gorithms are often probabilistic. This introduces the notion of repeated sampling of
the readout register in order to collect sufficient statistics for reporting a final result.
Depending on the level of instruction abstraction, the programmer may handle this
type of sampling, or it may arise within the QPU itself. For those use cases where
quantum behavior is intended to be hidden from the user, for example, with high-level
languages and libraries, QPU performance will be impacted by these classical pre- and
post-processing steps. The use of statistical sampling to derive the final result requires
confidence levels that determine the number of required samples and therefore total
duration of the program. Neither the instruction or gate metric that we have proposed
would measure this aspect of QPU performance. Instead, this becomes an element of
benchmarking against certain problem sets and solution goals. Algorithmic complexity
statements will offer some guidelines on the scaling of these slowdowns, but experi-
mental tests will be needed to identify the variance in total function performance.

Performance of the quantum interconnect is also a major factor in overall system
behavior. The rate at which QPUs establish entangled registers may be initially ig-
nored, since these operations can occur offline from the program execution. However,
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in a high-performance setting, the rate of entangling and preserving entanglement
between nodes represents a potential bottleneck for the system. Idle registers in a
QPU require active error correction to mitigate against noise, and any delays in the
quantum interconnect will add to this overhead.

It therefore seems very likely that QPUs will need to use some form of network man-
agement controller that interacts with the quantum programs wishing to execute using
entangled registers. The network manager will be responsible for ensuring availability
of entangled registers when requested by a program. This will require coordination
among the interconnect, the error-corrected registers, and the program instructions,
such that the manager refreshes entanglement between QPUs only when needed by
the program. However, faults and latencies in the both the QPUs and the interconnect
will complicate these instructions and may eventually lead to communication failure.
Therefore, the performance of the interconnect, and especially the entangling opera-
tions, is likely to be a major factor in overall system behavior.

5. CONCLUSIONS

As QPUs mature from basic scientific testbeds to robust devices, they will likely be
adopted for both application-specific and general-purpose computing. We have investi-
gated several possible abstract architectures for integrating QPUs into HPC systems.
We have examined both loose and tight integration designs, which differ primarily in
the communication infrastructure and runtime environment needed to host the QPU.
The relative performance of each design is expected to depend on how well the quantum
algorithm and its programming model offsets the costs of this communication as well
as the intended use case.

We have also emphasized that one of the most important aspects of future HPC
with QPUs is the quantum interconnect. It has long been appreciated for massively
parallel processing systems that the communication backbone between nodes plays
a significant role in performance. This has been underscored in recent years with
awareness that communication costs may often be bottlenecks in application scaling.
It is clear that a quantum interconnect can enhance system functionality by enlarging
the set of accessible register states, but it remains unclear if the interconnect would
provide a net benefit. This is because the entanglement established between nodes by
the interconnect would expose the system to a potentially more serious fault model, in
which correlated errors lead to a cascade of failures across QPUs. Appreciable attention
has been placed on fault-tolerant ISAs within the context of local computation, and
similar techniques for managing distributed QPUs will be an important issue moving
forward. Fault models for these architectures and protocols for mitigating against these
types of failures are needed.

Existing metrics for conventional computing do not capture all aspects of the QPU
behavior, and we have suggested several new features that need to be tracked when
tuning system performance (see Table I). This includes the overhead in fault-tolerant
ISAs as well as the spread in instruction timings. However, some instructions may be
so complex that their performance can only be measured in very restrictive settings,
for example, as special-purpose QPUs. The comparison of these metrics with each
other offers a quantitative means of assessing the value of QPU-enabled systems, but
only when they can be related to existing system metrics, for example, FLOPS, and so
on. Putting quantum metrics at the same level of inspections as those of CPU-based
measurements will require more detailed execution models for the entire system.
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