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I. INTRODUCTION

In this tutorial, we will introduce a powerful numerical method, density matriz renormalization group (DMRG), and
demonstrate how to simulate some paradigmatic one-dimensional (1D) spin models using this approach. Based on
renormalization group ideas, the DMRG algorithm was introduced to calculate low-lying states and their observables
in 1D lattice models [1-3]. It is realized later that DMRG is closely linked to a special quantum state class, so-called
matriz product state (MPS) [1—0], or equivalently, what some mathematicians call a tensor train [7]. In this tutorial,
we will set up the numerical algorithm using the MPS language. Within this frame, DMRG can be understood as a
variational optimization algorithm over MPS.

It is true that MPS are particularly well suited for describing gapped 1D quantum lattice systems with local interactions
[6, 8-11]. Different tensor network structures have been developed for other scenarios: projected entangled pair
states [12] for tackling two-dimensional systems, multiscale entanglement renormalization ansitz (MERA) [13] for
critical systems, and tree tensor network etc. In addition, numerical methods such as time-evolving block decimation
(TEBD) [14, 15] and time-dependent variational principle (TDVP) [16, 17] enables the computation of time evolution
of an MPS.

A. Matrix Product States

Let us set up a quantum system that lives on a 1D chain with N sites. The dimension of the local Hilbert space of
states {o;} is set to be d. For example, for an interacting spin-3 model, the local states are | 1), | |) and d = 2. Pure
states are then defined on the d”-dimensional Hilbert space

N
H= ®Hz, (1)
=1

and the most general state can be expanded in a computational basis as
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where sy denote the quantum numbers associated with the basis states |s¢) € Hy. It is straightforward to see the
total Hilbert space dimension is dim(H) = d~. MPS can be understood as the simplest tensor network structure
that compress the wave function to reduce the exponential dependence of the number of required parameters. The
core idea of MPS is to compress the many-body wave function by decomposing the wave function coefficients into a
product of matrices,
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Csy,82,....,sn = AalAa1,a2 e AaN—l' (3)

a1,a2,...,aN

After this compression, the number of parameters needed to parameterize the MPS is on the order of O(Ndx?), where
x is the bond dimension determined by the entanglement of bipartition.
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FIG. 1: Using a six-site spin chain as a toy model to show the compression of wave function coefficients, represented
by the huge blue tensors, into matrix product states. When the local states s, are fixed on each site, tracing back
the coefficient for that specific configuration becomes matrix multiplication in the MPS form.

B. Singular Value Decomposition

In this tutorial, it is worthwhile to introduce the singular value decomposition (SVD). This numerical method for
matrix decomposition is crucial for tracing out “unimportant” degrees of freedom, thereby enabling the approximation
of the real ground state in a much smaller Hilbert space. For an arbitrary (m x n) matrix M, there exists the singular
value decomposition with ¢ = min(m,n)

M =USV" (4)

where U is m x £ matrix with orthonormal columns (UTU = I), S is a diagonal £ x £ matrix with non-negative entries,
and VT is a £ x n matrix with orthonormal rows (VV = I).
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Furthermore, we want to mention that QR decomposition, another matrix decomposition method, is much faster and
also heavily used in the MPS-based algorithm.

C. Reformulate Tensor Networks in The Matrix Product States Language

For any given wave function, applying the SVD in an iterative manner allows to bring a tensor into MPS form. Let’s
show the first two steps of the procedure to illustrate how this idea works. Starting from the original dV dimensional

vector of wave function coefficients cs, s, . sy, We can reshape the coefficients into a matrix form Cy (s, . sy) =
Cs1.59.....sn Of dimensions d x d¥ 1. Here d is the dimension of the local Hilbert space and N is the number of physical
sites. In other words, we treat s; as the row index and the composite index (s3,s3,...,sn) as the column index.

Then we apply a SVD to the matrix
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where we defined cq, s,,..., 55 = S’al’al(VT)al’(Szy__qu). Let’s continue decomposing cq, s,,...,sn

Cay,s2,....sn = C(a1752)»(837-~75N)
X2 X2
_ E : T _
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By identifying A3} = Us, o, and AZ2 . = U(a, s,),a,, We can rewrite the original wave function coefficient as

_ s1 A82
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By applying the SVD iteratively, we can decompose the wave function coefficients into a product of matrices
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FIG. 2: Schematic illustration of decomposing a rank-4 tensor into a product of matrices using a tensor diagram.

Applying the SVD decomposition iteratively.

Given that the scope of this tutorial note is to introduce the computation of ground states in spin models using
DMRG, there are many topics we will not be able to cover. Indeed, we haven’t introduced a compression scheme in
the above procedure. Under specific relevant conditions, the maximum rank can be significantly reduced, which is
associated with the truncation error €. Furthermore, the matrix product state does not change under the insertion
of XX 1 = I between matrices A% and A%+!, which implies a gauge transformation A% — A% X and A%+ —
X ~tAsi+1, Exploiting this gauge freedom is beneficial in manipulating MPS. In the tutorial session, we will delve
deeper into the topics of compression scheme, canonical forms, and matrix product operators. For readers seeking

more technical details, Ref. [6, 8, 9] offer further insights into these topics.

II. HANDS-ON CODING

A. Installing Julia and the Julia version of ITensor

In this tutorial, we will be using the Julia programming language along with the Julia version of ITensor

[18,

19]. Tt is strongly recommended to download and install Julia before the classes. You can find platform-specific
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installation instruction at https://julialang.org/downloads/. Additionally, it is highly recommended to install the
Julia version of ITensor through the Julia package manager. A detailed introduction to the ITensor package is
available at https://www.scipost.org/SciPostPhysCodeb.4.

# Installing the Julia version of ITensor and

# Installing HDF5 (stands for Hieerarchical Data Format v5), which a file format for storing and managing data
$ julia

julia> ]

pkg> add ITensors

pkg> add HDF5

B. The XXZ Model

The spin-1 XXZ model is a deformation of the Heisenberg model which breaks the SU(2) symmetry down to a U(1)
symmetry. The XXZ chain is defined by the Hamiltonian

N
> (5E8E, + SYSY, + ASESE ) | 9)

i=1

=
I

A is the anisotropy parameter, where A = 1 is the isotropic case. The system is in a quasi-long-ranged ordered
nonmagnetic gapless phase when A satisfies —1 < A < 1. When A > 1, the ground state possesses a long-range
antiferromagnetic order in which the spin correlation functions decay exponentially.

Before delving into the actual coding for the XXZ model, let’s discuss the importance of selecting an appropriate
boundary condition for numerical simulations on a finite lattice. In the conventional DMRG, optimization is performed
over matrix product states (MPS) with open boundary condition (OBC). The computational cost of this approach is
on the order of O(Ndx?), where N represents the number of sites on a one-dimensional chain, d denotes the dimension
of the local Hilbert space, and  is the bond dimension. In sharp contrast, using a periodic boundary condition (PBC)
changes the scaling to O(Ndx?) to reach the same accuracy. Furthermore, we want to mention that the boundary
effects can be rigorously removed by using infinite boundary condition through infinite DMRG [20, 21] or variational
uniform matrix product states (VUMPS) [22], if the calculation has converged.

# Conduct a basic DMRG calculation on the one-dimensional XXZ model
using ITensors
using HDFb5

let
# Define the number of sites in the chain
# The random MPS must be defined in the same Hilbert space as the Hamiltonian
number_of_sites = 100
sites = siteinds("S=1/2", number_of_sites)
Psi0 = randomMPS(sites; linkdims = 2)

# Define the paramters used in the Hamiltonian
J=1.0
Delta = 0.5

# Set up the Hamiltonian
os = OpSum()

# Set up the nearest-neighbor interactions

for index = 1 : number_of_sites - 1
os += 0.5 * J, "S+", index, "S-", index + 1
os += 0.5 * J, "S-", index, "S+", index + 1

os += Delta, "Sz", index, "Sz", index + 1
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In this lecture note, we simulate the XXZ model on a 1D chain with OBC. We utilize a long chain and concentrate on
the bulk region to extrapolate physical information, effectively removing edge effects. The convergence of a DMRG
simulation is influenced by several factors, including whether the system is gapped or gapless, its proximity to a
critical point, and its dimensionality. One way to check the convergence is to compute the variance, defined as

N . 2
(Y|H?|y) — <(¢|H |1/1)) = (H?) — (H)?, of the converged MPS to check whether it is an eigenstate by adding the
following lines of codes.

ot W N

Entanglement entropy is one of the most fundamental quantities in quantum mechanics. For a bipartite quantum
system with the Hilbert space H = Ha Q) Hp, we can quantify the entanglement between two subsystems A and B
by the von Neumann entanglement entropy for a given quantum state |v),

Sas([¥)) = —trapalnpa = —trpppInpp, (10)

where p 4 denotes the reduced density matrix of subsystem A and pp denotes the reduced density matrix of subsystem
B.

On the other hand, we can decompose a quantum state [¢)) using the Schmidt decomposition. For example, we can
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bipartite a 1D chain into subsystems A and B and rewrite the quantum state |¢) in a general form

dimH A dimHp

Wwy= > wili)ali)s. (11)
i=1  j=1

where the {|i) 4} and {|j) 5} form orthonormal bases of subsystems A and B respectively. As a result, we can compute
the von Neumann entanglement entropy using

Sap(|9) = Sun == salns, (12)
a=1

where s, are the non-vanishing singular values if we perform an SVD of . Using the MPS form, the von Neumann
entanglement entropy can be computed naturally using the following block of codes.

# Compute the von Neumman entanglement entropy S,N for a bipartition of the chain into two subsystems.
# Subsystem A consists of sites 1,2,...,b
# Subsystem B consists of sites b+1,b+2,...,N
function entanglement_entropy(input_psi :: MPS, site_index :: Int)
SvN = 0.0

s = siteinds(input_psi)
orthogonalize! (input_psi, site_index)
i, j = s[site_index], linkinds(input_psi, site_index - 1)
_, S, _ = svd(input_psi[site_index], (j, i))
for index in 1 : size(S, 1)
p = Sl[lindex, index] 2
SvN -= p * log(p)
end
return SvN

end

e Exercise: Set up an one-dimensional XXZ chain and apply open boundary condition. The length of the
chain is set to N = 100. Explore the difference between the quasi-long-range order and long-range Ising-like
antiferromagnetic order through spin correlation functions, setting A/J = 0.5 and A/J = 1.5 or any other valid
values. Optional for advanced users: plot the entanglement entropy S,y for each possible cut of the MPS. What
do you observe?

e Exercise: Fig. 3 shows the spin correlation function C, (¢',¢) = (S*(¢')S*(¢)). Let’s also consider other spin
correlation functions Cy, (¢, ¢) and C..(¢,¢). What do you observe in correlation function if there is a true
long-range order?

C. The J; — J2 Heisenberg Model

In this exercise, we use DMRG to obtain the ground state of the spin-1/2 J; — Jo Heisenberg model in 1D. The
Hamiltonian of the model is given by

H=nY 5 §+5 Y &5, (13)
(4,4) ((4.9))

where the sum is over all possible nearest-neighbor and second-nearest-neighbor pairs. Here S; = (S¥,SY,S7) denotes
3-vectorial spin operators localized at the lattice site. In the 1D Heisenberg model (J; = 0), there can be no magnetic
order due to the Hohenberg-Mermin-Wagner theorem [23-25]. The spin correlation function C(r) = (S - ;i)
decays with the distance r as (—1)"/r with a logarithmic correction. Adding the second-nearest-neighbor interaction
introduce a quantum phase transition into a valence-bond solid state (VBS) when the interaction strength is strong
enough. The spin correlation decays exponentially in the VBS state.
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FIG. 3: Staggered spin correlation function (—1)*Cy (¢, £) for the XXZ model with (a) A/J = 0.5 and (b)
A/J =1.5. Using ¢’ = 51 as the reference point for a chain with N = 100 sites. The von Neumann entanglement
entropy S,n(By¢) along every possible cut By in the MPS at (¢) A/J =0.5 and (d) A/J = 1.5.

e Exercise: Set up an one-dimensional Heisenberg chain with only nearest-neighbor interaction (J; =1, J; = 0)
and apply periodic boundary condition. The length of the chain is set to NV = 22. Conduct a DMRG calculation
to optimize the MPS and compute the ground-state energy. Compare the simulation result to the exact ground-
state energy Fy = —9.78688065177, which was obtained using brute-force exact diagonalization (ED).

e Hint: If you your setup is correct and you use a truncation error of ¢ = 1071% and Nj, = 20 iterations, the
following is an example of the energy convergence history during a DMRG simulation. Upon convergence, the
ground-state energy calculated in the DMRG simulation should closely approximate the value obtained through
ED.

1 # Compute the variance of the converged MPS

2 After sweep 15 energy=-9.786880646351406 maxlinkdim=215 maxerr=9.85E-11 time=0.960
3 After sweep 16 energy=-9.786880646351435 maxlinkdim=215 maxerr=9.85E-11 time=0.812
4 After sweep 17 energy=-9.786880646351458 maxlinkdim=215 maxerr=9.85E-11 time=0.914
5 After sweep 18 energy=-9.786880646351449 maxlinkdim=215 maxerr=9.85E-11 time=0.832
6 After sweep 19 energy=-9.786880646351495 maxlinkdim=215 maxerr=9.85E-11 time=0.819
7 After sweep 20 energy=-9.78688064635151 maxlinkdim=215 maxerr=9.85E-11 time=0.858

e Exercise: As shown above, the ground-state energy computed using DMRG has already converged by iteration
sweep 15. In such cases, we can terminate the DMRG calculation early based on specific criteria, such as the
energy difference between two consecutive steps being smaller than a cutoff AE = |E, — Ep11| < n, where p
represents the number of iterations and 1 = 107 is the cutoff set by you. To facilitate an early stop in a DMRG
simulation, one needs to implement a customer observer and call DMRG with the customer observer. For more
details, please refer to the document Early Stop.

e Exercise: By setting J, = %Jl, we obtain the Majumdar-Ghosh model that can be solved exactly,

(4,9 ((@.3))

By completing the square, the Hamiltonian can be rewritten in an equivalent form

Al . L LN
H = 12(51-_14-5@4-5@4_1) —+ const. (15)
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FIG. 4: Spin correlation function (—1)C., (¢, ) for the Heisenberg model with (a) Jo/J; = 0.5 and (b) Jo/J; = 0.
Using ¢/ = 51 as the reference point for a chain with N = 100 sites. The von Neumann entanglement entropy
Syn (Be) along every possible cut By in the MPS at Jo/J; = 0.5 and J3/J; = 0.

Conduct a DMRG calculation, using open boundary condition, to determine the energy per site in the ground
state for the Majumdar-Ghosh model and compare the numerical value to the exact solution. Can you interpret
the results using the concept of valence-bond solids? Additionally, observe the von Neumann entanglement
entropy S,n and the bond dimension x. What insights can you derive from these observations? This article on
Wikipedia might be useful Majumdar-Ghosh.

e Exercise: Although true symmetry-breaking phase transitions only occur in the thermodynamic limit (as the
number of lattice sites — oo) for lattice models, the correlation functions and their Fourier transformations,
known as structure factors, provide valuable insights into phase transitions on finite lattices. By employing
careful finite-size scaling, phase transitions can be investigated using finite lattice sizes. Conduct DMRG sim-
ulations with OBC at Jy/J; = 0 and J5/J; = 0.5 and calculate spin correlation functions Cy, (¢, ¢), Cyy (¢, 0),
C..(0,0) as well as C(¢',0) = Coa(?',0). Can you analyze and interpret the results?

a=t,y,z

e Hint: Fig. 4 shows the expected behavior for the staggered spin correlation function (—1)¢C..(¢,¢) and the
von Neumann entanglement entropy.
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